期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
一种基于逐次变分模态分解和改进深度极限学习机的滚动轴承故障分类方法 被引量:1
1
作者 丁国荣 《农业装备与车辆工程》 2024年第10期129-134,共6页
为应对滚动轴承故障诊断中特征提取较难和故障类型识别准确率偏低等问题,提出一种基于逐次变分模态分解(SVMD)与分形维数(FD)结合算术优化算法(AOA)优化深度极限学习机(DELM)的轴承故障诊断方法。通过SVMD对轴承原始振动信号进行多尺度... 为应对滚动轴承故障诊断中特征提取较难和故障类型识别准确率偏低等问题,提出一种基于逐次变分模态分解(SVMD)与分形维数(FD)结合算术优化算法(AOA)优化深度极限学习机(DELM)的轴承故障诊断方法。通过SVMD对轴承原始振动信号进行多尺度分解,得到一系列固有模态分量(IMFs);计算不同状态下各个IMF分量的FD,归一化后作为故障特征向量;利用AOA-DELM模型实现轴承的故障诊断。采用美国凯斯西储大学(CWRU)轴承数据集作为实验数据进行实验验证,结果表明,所提方法在滚动轴承故障诊断中具有优越性,识别准确率可达98.80%。 展开更多
关键词 轴承故障分类 逐次变分模态分解 深度极限学习机 算术优化算法
在线阅读 下载PDF
基于AACA-LSSVM的同步发电机滚动轴承故障分类 被引量:2
2
作者 王莉 李伟伟 张强 《大电机技术》 2015年第1期21-23,38,共4页
针对LSSVM模型在同步发电机轴承故障分类训练中时间过长、分类精度不高的缺点,本文提出自适应蚁群算法改进LSSVM模型的方法。自适应调整蚁群算法的挥发因子和状态转移规则,寻找最优的LSSVM参数,建立AACA-LSSVM模型。提取不同故障状态下... 针对LSSVM模型在同步发电机轴承故障分类训练中时间过长、分类精度不高的缺点,本文提出自适应蚁群算法改进LSSVM模型的方法。自适应调整蚁群算法的挥发因子和状态转移规则,寻找最优的LSSVM参数,建立AACA-LSSVM模型。提取不同故障状态下的轴承振动信号,经EMD分解后,计算IMF分量的关联维数和Shannon信息熵,以此作为故障样本数据训练分类模型。仿真实验中与LSSVM模型进行了对比,结果表明AACA-LSSVM在分类时间和精度上都优于LSSVM模型。 展开更多
关键词 轴承故障分类 自适应蚁群算法 最小二乘支持向量机 经验模态分解 关联维数 Shannon信息熵
在线阅读 下载PDF
优化变分模态分解与集成机器学习的风力机滚动轴承故障分类研究 被引量:3
3
作者 白亮 张银 +1 位作者 梁武科 骆嘉旺 《机械设计与研究》 CSCD 北大核心 2023年第3期101-108,共8页
针对滚动轴承振动信号特征提取及故障分类困难这一问题,提出了一种基于鲸鱼算法(WOA)的滚动轴承特征信号提取与极限梯度提升的机器学习方法。以模态信号包络熵最小为适应度函数,对变分模态分解(VMD)层数和惩罚因子进行寻优处理。根据所... 针对滚动轴承振动信号特征提取及故障分类困难这一问题,提出了一种基于鲸鱼算法(WOA)的滚动轴承特征信号提取与极限梯度提升的机器学习方法。以模态信号包络熵最小为适应度函数,对变分模态分解(VMD)层数和惩罚因子进行寻优处理。根据所得最佳分解参数对原始信号模态分解,得到各模态分量并根据能量波动法进行特征信号的筛选,最后根据模态分量建立极限梯度提升学习模型。对四类信号进行学习训练和故障分类。结果表明:WOA-VMD与XGBoost结合可以有效降低信号噪声,得到轴承的故障特征,并能够有效的识别出故障类型。 展开更多
关键词 变分模态分解 鲸鱼算法 轴承故障分类 极限梯度提升
原文传递
基于小样本学习的滚动轴承故障检测 被引量:1
4
作者 曹荧荧 郇战 +1 位作者 陈震 陈瑛 《数据采集与处理》 CSCD 北大核心 2024年第4期1033-1042,共10页
轴承故障类型复杂,并且在不同工况下每种故障类型都很难获得足够的训练样本。因此,本文提出一种基于深度神经网络的小样本学习分类算法,引入第1层具有宽卷积核网络(Convolutional neural network with training interference,TICNN)作... 轴承故障类型复杂,并且在不同工况下每种故障类型都很难获得足够的训练样本。因此,本文提出一种基于深度神经网络的小样本学习分类算法,引入第1层具有宽卷积核网络(Convolutional neural network with training interference,TICNN)作为孪生网络的子网络用于提取特征,减少工业环境噪声影响。孪生网络是一种常用于小样本学习的结构,通过输入相同或不同类别的样本对进行训练,学习不同属性样本与特征之间的映射关系,并采用相似度进行度量。测试样本通过寻找最近邻的类别来实现分类。在标准凯斯西储大学轴承故障诊断基准数据集上的实验结果表明,在数据有限的情况下,本文模型在故障诊断中表现出更好的效果。当使用最少的训练数据在不同的噪声环境中进行测试时,本文小样本学习模型的性能超过了具有合理噪声水平的基线模型,故障诊断准确率达到了94.41%。当在具有新故障类型或新工作条件的测试集上进行评估时,本文模型仍然有效。 展开更多
关键词 滚动轴承故障分类 小样本学习 孪生网络 有限样本 卷积神经网络
在线阅读 下载PDF
基于小波核扩散与双阶段SVM的轴承复合故障分类方法 被引量:6
5
作者 陈赛赛 杨晨曦 +2 位作者 陈超 贺长波 樊薇 《仪器仪表学报》 EI CAS CSCD 北大核心 2023年第10期179-188,共10页
轴承复合故障分类中存在故障特征强线性不可分及故障数据标签不足问题,严重影响分类精度。为此,提出基于双阶段支持向量机(SVM)与小波核扩散的轴承复合故障分类方法。针对故障特征强线性不可分,使用小波核函数对其进行高维空间映射,并... 轴承复合故障分类中存在故障特征强线性不可分及故障数据标签不足问题,严重影响分类精度。为此,提出基于双阶段支持向量机(SVM)与小波核扩散的轴承复合故障分类方法。针对故障特征强线性不可分,使用小波核函数对其进行高维空间映射,并利用极大重叠离散小波包变换获取信号在不同频带上的能量分布作为故障特征;针对故障数据标签不足,提出增量式核空间标签扩散的双阶段SVM分类模型,在小波核空间核差异距离基础上,利用增量式核空间标签扩散对训练样本的近邻样本、粗分阶段边界样本进行扩充,并在细分阶段依据扩充后的样本完成模型训练。3组轴承复合故障数据验证了所提方法的有效性,实验研究表明,在单类训练样本为5的条件下,所提方法比SVM分类准确率平均提升7.5%,并优于其他流行算法。 展开更多
关键词 轴承复合故障分类 TWD-SVM 增量式核空间标签扩散 核差异距离 半监督学习
在线阅读 下载PDF
学习字典与奇异值分解的轴承故障识别方法
6
作者 时培明 马晓杰 +1 位作者 郭晓慈 李渊 《噪声与振动控制》 CSCD 2020年第2期91-95,173,共6页
针对多种不同程度滚动轴承故障难以识别的难题,提出一种基于学习字典与奇异值分解的轴承故障识别新方法,可以实现在对某一程度故障数据进行学习训练的基础上对其他程度故障类型进行判断。该方法首先利用某单一程度故障的数据训练学习字... 针对多种不同程度滚动轴承故障难以识别的难题,提出一种基于学习字典与奇异值分解的轴承故障识别新方法,可以实现在对某一程度故障数据进行学习训练的基础上对其他程度故障类型进行判断。该方法首先利用某单一程度故障的数据训练学习字典组合成新字典,然后对其他程度故障数据通过奇异值分解进行去噪处理,求解这些数据在组合字典下的稀疏表示矩阵,最后根据稀疏表示矩阵中非零系数的概率分布情况对故障类型进行判断。对轴承实验数据的分析表明:学习字典在轴承故障识别方面具有简单高效的特点,奇异值分解能够显著提升不同程度故障分类的准确率。 展开更多
关键词 振动与波 轴承故障分类 学习字典 奇异值分解 稀疏表示
在线阅读 下载PDF
A Roller Bearing Fault Diagnosis Method Based on Improved LMD and SVM 被引量:3
7
作者 程军圣 史美丽 +1 位作者 杨宇 杨丽湘 《Journal of Measurement Science and Instrumentation》 CAS 2011年第1期1-5,共5页
Aiming at the non-stationary feattwes of the roller bearing fault vibration signal, a roller bearing fault diagnosis methtxt based on improved Local Mean Decomposition (LMD) and Support Vector Machine (SVM) is pro... Aiming at the non-stationary feattwes of the roller bearing fault vibration signal, a roller bearing fault diagnosis methtxt based on improved Local Mean Decomposition (LMD) and Support Vector Machine (SVM) is proposed. In this paper, firstly, the wavelet analysis is introduced to the signal decomposition and reconstruction; secondly, the LMD method is used to decompose the recomtnion signal obtained by the wavelet analysis into a ntmaber of Product Ftmctions (PFs) that include main fault characteristics, thus, the initial feattwe vector matrixes could be formed automatically; Thirdly, by applying the Singular Valueition (SVD) techniques to the initial feature vector matrixes, the singular values of the matrixes can be obtained, which can be used as the fault feature vectors of the roller bearing and serve as the input vectors of the SVM classifier; Finally, the recognition results can be obtained from the SVM output. The results of analysis show that the propsed method can be applied to roller beating fault diagnosis effectively. 展开更多
关键词 LMD roller bearing singular value decomposition support vector machine
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部