Using the one atom theory, the electronic structures of pure Cr, Mo and W with bcc structure were determined respectively as: [Ar] (3d c) 3.32 (3d n) 2.26 (4s c) 0.25 (4s f) 0.17 , [Kr] (4d c) 4.23 (4d n) 1.48 (5s c) ...Using the one atom theory, the electronic structures of pure Cr, Mo and W with bcc structure were determined respectively as: [Ar] (3d c) 3.32 (3d n) 2.26 (4s c) 0.25 (4s f) 0.17 , [Kr] (4d c) 4.23 (4d n) 1.48 (5s c) 0.02 (5s f) 0.27 and [Xe](5d c) 5.16 (6s c) 0.25 (6s f) 0.59 .The electronic structures of these metals with hcp and fcc structures and liquid state were also studied. According to their electronic structures, the relationship between the electronic structure and crystalline structure was explained qualitatively and the relationship between the difference of mechanical properties and transport properties of pure Cr, Mo and W with bcc structure and their electronic structures was also explained qualitatively; the lattice constants, binding energy, potential curves, elasticities and the temperature dependence of the linear thermal expansion coefficient of bcc Cr, bcc Mo and bcc W were calculated quantitatively.展开更多
The subsection linear torsional model of hydrodynamic torque converter was established and further simplified. According to the identification theory, the frequency characteristic was achieved with the Matlab/ Ident ...The subsection linear torsional model of hydrodynamic torque converter was established and further simplified. According to the identification theory, the frequency characteristic was achieved with the Matlab/ Ident toolbox. Then parametric model was established by adopting the subsection linearization method, and the damp value was estimated. The curve and function of damp changing with speed ratio was also established by fitting. In order to validate the identification results, the experimental output was compared with the output of the model in which torque was chosen as input signal and speed as output signal in Matlab/Ident toolbox. It was shown that model output is in good agreement with experimental output.展开更多
Both sputtering conditions and crystallizing temperatures have great influence on the microstructures and phase transformation characteristics for Ti 51 Ni 44Cu 5. By means of the resistance temperature measurement, X...Both sputtering conditions and crystallizing temperatures have great influence on the microstructures and phase transformation characteristics for Ti 51 Ni 44Cu 5. By means of the resistance temperature measurement, X ray diffraction and atomic fore microscopic study, the results indicate that the transformation temperatures of the thin films increase and the "rock candy" martensitic relief is more easily obtained with promoting the sputtering Ar pressure, sputtering power, or crystallizing temperature. However, when sputtering Ar pressure, sputtering power, or crystallizing temperature are lower, a kind of "chrysanthemum" relief, which is related with Ti rich GP zones, is much easier to be observed. The reason is that during crystallization process, both of the inherent compressive stresses introduced under the condition of higher sputtering pressure or higher crystallizing temperature are helpful to the transition from GP zones to Ti 2(NiCu) precipitates and the increase of the transformation temperatures. The addition of copper to substitute for 5% nickel in mole fraction can reduce the transformation hysteresis width to about 10 ~ 15?℃.展开更多
基金the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)(58-TZ-2011)the "111" Project under Grant(B08040)+1 种基金Northwestern Polytechnical University(NPU)Fundamental Research(JC201111)National Natural Science Foundation of China(51202196)
文摘Using the one atom theory, the electronic structures of pure Cr, Mo and W with bcc structure were determined respectively as: [Ar] (3d c) 3.32 (3d n) 2.26 (4s c) 0.25 (4s f) 0.17 , [Kr] (4d c) 4.23 (4d n) 1.48 (5s c) 0.02 (5s f) 0.27 and [Xe](5d c) 5.16 (6s c) 0.25 (6s f) 0.59 .The electronic structures of these metals with hcp and fcc structures and liquid state were also studied. According to their electronic structures, the relationship between the electronic structure and crystalline structure was explained qualitatively and the relationship between the difference of mechanical properties and transport properties of pure Cr, Mo and W with bcc structure and their electronic structures was also explained qualitatively; the lattice constants, binding energy, potential curves, elasticities and the temperature dependence of the linear thermal expansion coefficient of bcc Cr, bcc Mo and bcc W were calculated quantitatively.
文摘The subsection linear torsional model of hydrodynamic torque converter was established and further simplified. According to the identification theory, the frequency characteristic was achieved with the Matlab/ Ident toolbox. Then parametric model was established by adopting the subsection linearization method, and the damp value was estimated. The curve and function of damp changing with speed ratio was also established by fitting. In order to validate the identification results, the experimental output was compared with the output of the model in which torque was chosen as input signal and speed as output signal in Matlab/Ident toolbox. It was shown that model output is in good agreement with experimental output.
文摘Both sputtering conditions and crystallizing temperatures have great influence on the microstructures and phase transformation characteristics for Ti 51 Ni 44Cu 5. By means of the resistance temperature measurement, X ray diffraction and atomic fore microscopic study, the results indicate that the transformation temperatures of the thin films increase and the "rock candy" martensitic relief is more easily obtained with promoting the sputtering Ar pressure, sputtering power, or crystallizing temperature. However, when sputtering Ar pressure, sputtering power, or crystallizing temperature are lower, a kind of "chrysanthemum" relief, which is related with Ti rich GP zones, is much easier to be observed. The reason is that during crystallization process, both of the inherent compressive stresses introduced under the condition of higher sputtering pressure or higher crystallizing temperature are helpful to the transition from GP zones to Ti 2(NiCu) precipitates and the increase of the transformation temperatures. The addition of copper to substitute for 5% nickel in mole fraction can reduce the transformation hysteresis width to about 10 ~ 15?℃.