With the advancement of technology,the collaboration of multiple unmanned aerial vehicles(multi-UAVs)is a general trend,both in military and civilian domains.Path planning is a crucial step for multi-UAV mission execu...With the advancement of technology,the collaboration of multiple unmanned aerial vehicles(multi-UAVs)is a general trend,both in military and civilian domains.Path planning is a crucial step for multi-UAV mission execution,it is a nonlinear problem with constraints.Traditional optimization algorithms have difficulty in finding the optimal solution that minimizes the cost function under various constraints.At the same time,robustness should be taken into account to ensure the reliable and safe operation of the UAVs.In this paper,a self-adaptive sparrow search algorithm(SSA),denoted as DRSSA,is presented.During optimization,a dynamic population strategy is used to allocate the searching effort between exploration and exploitation;a t-distribution perturbation coefficient is proposed to adaptively adjust the exploration range;a random learning strategy is used to help the algorithm from falling into the vicinity of the origin and local optimums.The convergence of DRSSA is tested by 29 test functions from the Institute of Electrical and Electronics Engineers(IEEE)Congress on Evolutionary Computation(CEC)2017 benchmark suite.Furthermore,a stochastic optimization strategy is introduced to enhance safety in the path by accounting for potential perturbations.Two sets of simulation experiments on multi-UAV path planning in three-dimensional environments demonstrate that the algorithm exhibits strong optimization capabilities and robustness in dealing with uncertain situations.展开更多
A novel method to characterize CMOS process fluctuations in subthreshold current mirrors (SCM) is reported. The proposed model is succinct in methodology and calculation complexity compared with previous statistical...A novel method to characterize CMOS process fluctuations in subthreshold current mirrors (SCM) is reported. The proposed model is succinct in methodology and calculation complexity compared with previous statistical models. However,it provides favorable estimations of CMOS process fluctuations on the SCM circuit, which makes it promising for engineering applications. The model statistically abstracts physical parameters, which depend on the IC process, into random variables with certain mean values and standard deviations, while aggregating all the random impacts into a discrete martingale. The correctness of the proposed method is experimentally verified on an SCM circuit implemented in an SMIC 0.18μm CMOS 1P6M mixed signal process with a conversion factor of 100 in an input range from 100pA to lμA. The pro- posed theory successfully predicts - 10% of die-to-die fluctuation measured in the experiment, and also suggests the -lmV of threshold voltage standard deviation over a single die,which meets the process parameters suggested by the design kit from the foundry. The deviations between calculated probabilities and measured data are less than 8%. Meanwhile, pertinent suggestions concerning high fluctuation tolerance subthreshold analog circuit design are also made and discussed.展开更多
We investigate the impact of coupling on the reliability of the logic system as well as the logical stochastic resonance (LSR) phenomenon in the coupled logic gates system. It is found that compared with single logi...We investigate the impact of coupling on the reliability of the logic system as well as the logical stochastic resonance (LSR) phenomenon in the coupled logic gates system. It is found that compared with single logic gate, the coupled system could yield reliable logic outputs in a much wider noise region, which means coupling can obviously improve the reliability of the logic system and thus enhance the LSR effect. Moreover, we find that the enhancement is larger for larger system size, whereas for large enough size the enhancement seems to be saturated. Finally, we also examine the effect of coupling strength, it can be observed that the noise region where reliable logic outputs can be obtained evolves non-monotonically as the coupling strength increases, displaying a resonance-like effect.展开更多
A novel neuMOS source follower circuit is presented.The cell can complete the s ource follower function even if the input voltage is lower than the threshold of the source follower,thus high-precision operation of th...A novel neuMOS source follower circuit is presented.The cell can complete the s ource follower function even if the input voltage is lower than the threshold of the source follower,thus high-precision operation of the circuit is achieved. The simulation and the measurement results show that its precision is higher tha n that of other neuMOS source follower circuits.展开更多
In order to describe pavement roughness more intuitively and effectively, a method of pavement roughness simulation, i.e., the stochastic sinusoidal wave, is introduced. The method is based on the primary idea that pa...In order to describe pavement roughness more intuitively and effectively, a method of pavement roughness simulation, i.e., the stochastic sinusoidal wave, is introduced. The method is based on the primary idea that pavement roughness is denoted as the sum of numerous sines or cosines with stochastic phases, and uses the discrete spectrum to approach the target stochastic process. It is a discrete numerical method used to simulate pavement roughness. According to a given pavement power spectral density (PSD) coefficient, under the condition that the character of displacement frequency based on the time domain model is in accordance with the given pavement surface spectrum, the pavement roughness is optimized to stochastic equivalent vibrations by computer simulation, and the curves that describe pavement roughness under each grade are obtained. The results show that the stochastic sinusoidal wave is suitable for simulation of measured pavement surface spectra based on the time domain model. The method of the stochastic sinusoidal wave is important to the research on vehicle ride comfort due to its rigorous mathematical derivation, extensive application range and intuitive simulation curve. Finally, a roughness index defined as the nominal roughness index (NRI) is introduced, and it has correlation with the PSD coefficient.展开更多
A new dynamic path planning method in high dimensional workspace, radial based probabilistic roadmap motion (RBPRM) planning method, is presented. Different from general probabilistic roadmap motion planning methods, ...A new dynamic path planning method in high dimensional workspace, radial based probabilistic roadmap motion (RBPRM) planning method, is presented. Different from general probabilistic roadmap motion planning methods, it uses straight lines as long as possible to construct a path graph, so the final path obtained from the graph is relatively shorter and straighter. Experimental results show the efficiency of the algorithm in finding shorter paths in sparse environment.展开更多
Opportunistic networks are random networks and do not communicate with each other among respective communication areas.This situation leads to great difficulty in message transfer.This paper proposes a reducing energy...Opportunistic networks are random networks and do not communicate with each other among respective communication areas.This situation leads to great difficulty in message transfer.This paper proposes a reducing energy consumption optimal selection of path transmission(OSPT) routing algorithm in opportunistic networks.This algorithm designs a dynamic random network topology,creates a dynamic link,and realizes an optimized selected path.This algorithm solves a problem that nodes are unable to deliver messages for a long time in opportunistic networks.According to the simulation experiment,OSPT improves deliver ratio,and reduces energy consumption,cache time and transmission delay compared with the Epidemic Algorithm and Spray and Wait Algorithm in opportunistic networks.展开更多
The traffic equilibrium assignment problem under tradable credit scheme(TCS) in a bi-modal stochastic transportation network is investigated in this paper. To describe traveler’s risk-taking behaviors under uncertain...The traffic equilibrium assignment problem under tradable credit scheme(TCS) in a bi-modal stochastic transportation network is investigated in this paper. To describe traveler’s risk-taking behaviors under uncertainty, the cumulative prospect theory(CPT) is adopted. Travelers are assumed to choose the paths with the minimum perceived generalized path costs, consisting of time prospect value(PV) and monetary cost. At equilibrium with a given TCS, the endogenous reference points and credit price remain constant, and are consistent with the equilibrium flow pattern and the corresponding travel time distributions of road sub-network. To describe such an equilibrium state, the CPT-based stochastic user equilibrium(SUE) conditions can be formulated under TCS. An equivalent variational inequality(VI) model embedding a parameterized fixed point(FP) model is then established, with its properties analyzed theoretically. A heuristic solution algorithm is developed to solve the model, which contains two-layer iterations. The outer iteration is a bisection-based contraction method to find the equilibrium credit price, and the inner iteration is essentially the method of successive averages(MSA) to determine the corresponding CPT-based SUE network flow pattern. Numerical experiments are provided to validate the model and algorithm.展开更多
基金Foundation items:National Natural Science Foundation of China(No.62303108)Fundamental Research Funds for the Central Universities,China(No.CUSF-DH-T-2023065)。
文摘With the advancement of technology,the collaboration of multiple unmanned aerial vehicles(multi-UAVs)is a general trend,both in military and civilian domains.Path planning is a crucial step for multi-UAV mission execution,it is a nonlinear problem with constraints.Traditional optimization algorithms have difficulty in finding the optimal solution that minimizes the cost function under various constraints.At the same time,robustness should be taken into account to ensure the reliable and safe operation of the UAVs.In this paper,a self-adaptive sparrow search algorithm(SSA),denoted as DRSSA,is presented.During optimization,a dynamic population strategy is used to allocate the searching effort between exploration and exploitation;a t-distribution perturbation coefficient is proposed to adaptively adjust the exploration range;a random learning strategy is used to help the algorithm from falling into the vicinity of the origin and local optimums.The convergence of DRSSA is tested by 29 test functions from the Institute of Electrical and Electronics Engineers(IEEE)Congress on Evolutionary Computation(CEC)2017 benchmark suite.Furthermore,a stochastic optimization strategy is introduced to enhance safety in the path by accounting for potential perturbations.Two sets of simulation experiments on multi-UAV path planning in three-dimensional environments demonstrate that the algorithm exhibits strong optimization capabilities and robustness in dealing with uncertain situations.
文摘A novel method to characterize CMOS process fluctuations in subthreshold current mirrors (SCM) is reported. The proposed model is succinct in methodology and calculation complexity compared with previous statistical models. However,it provides favorable estimations of CMOS process fluctuations on the SCM circuit, which makes it promising for engineering applications. The model statistically abstracts physical parameters, which depend on the IC process, into random variables with certain mean values and standard deviations, while aggregating all the random impacts into a discrete martingale. The correctness of the proposed method is experimentally verified on an SCM circuit implemented in an SMIC 0.18μm CMOS 1P6M mixed signal process with a conversion factor of 100 in an input range from 100pA to lμA. The pro- posed theory successfully predicts - 10% of die-to-die fluctuation measured in the experiment, and also suggests the -lmV of threshold voltage standard deviation over a single die,which meets the process parameters suggested by the design kit from the foundry. The deviations between calculated probabilities and measured data are less than 8%. Meanwhile, pertinent suggestions concerning high fluctuation tolerance subthreshold analog circuit design are also made and discussed.
文摘We investigate the impact of coupling on the reliability of the logic system as well as the logical stochastic resonance (LSR) phenomenon in the coupled logic gates system. It is found that compared with single logic gate, the coupled system could yield reliable logic outputs in a much wider noise region, which means coupling can obviously improve the reliability of the logic system and thus enhance the LSR effect. Moreover, we find that the enhancement is larger for larger system size, whereas for large enough size the enhancement seems to be saturated. Finally, we also examine the effect of coupling strength, it can be observed that the noise region where reliable logic outputs can be obtained evolves non-monotonically as the coupling strength increases, displaying a resonance-like effect.
文摘A novel neuMOS source follower circuit is presented.The cell can complete the s ource follower function even if the input voltage is lower than the threshold of the source follower,thus high-precision operation of the circuit is achieved. The simulation and the measurement results show that its precision is higher tha n that of other neuMOS source follower circuits.
文摘In order to describe pavement roughness more intuitively and effectively, a method of pavement roughness simulation, i.e., the stochastic sinusoidal wave, is introduced. The method is based on the primary idea that pavement roughness is denoted as the sum of numerous sines or cosines with stochastic phases, and uses the discrete spectrum to approach the target stochastic process. It is a discrete numerical method used to simulate pavement roughness. According to a given pavement power spectral density (PSD) coefficient, under the condition that the character of displacement frequency based on the time domain model is in accordance with the given pavement surface spectrum, the pavement roughness is optimized to stochastic equivalent vibrations by computer simulation, and the curves that describe pavement roughness under each grade are obtained. The results show that the stochastic sinusoidal wave is suitable for simulation of measured pavement surface spectra based on the time domain model. The method of the stochastic sinusoidal wave is important to the research on vehicle ride comfort due to its rigorous mathematical derivation, extensive application range and intuitive simulation curve. Finally, a roughness index defined as the nominal roughness index (NRI) is introduced, and it has correlation with the PSD coefficient.
文摘A new dynamic path planning method in high dimensional workspace, radial based probabilistic roadmap motion (RBPRM) planning method, is presented. Different from general probabilistic roadmap motion planning methods, it uses straight lines as long as possible to construct a path graph, so the final path obtained from the graph is relatively shorter and straighter. Experimental results show the efficiency of the algorithm in finding shorter paths in sparse environment.
基金Supported by the National Natural Science Foundation of China(No.61379057,61073186,61309001,61379110,61103202)Doctoral Fund of Ministry of Education of China(No.20120162130008)the National Basic Research Program of China(973 Program)(No.2014CB046305)
文摘Opportunistic networks are random networks and do not communicate with each other among respective communication areas.This situation leads to great difficulty in message transfer.This paper proposes a reducing energy consumption optimal selection of path transmission(OSPT) routing algorithm in opportunistic networks.This algorithm designs a dynamic random network topology,creates a dynamic link,and realizes an optimized selected path.This algorithm solves a problem that nodes are unable to deliver messages for a long time in opportunistic networks.According to the simulation experiment,OSPT improves deliver ratio,and reduces energy consumption,cache time and transmission delay compared with the Epidemic Algorithm and Spray and Wait Algorithm in opportunistic networks.
基金Project(BX20180268)supported by National Postdoctoral Program for Innovative Talent,ChinaProject(300102228101)supported by Fundamental Research Funds for the Central Universities of China+1 种基金Project(51578150)supported by the National Natural Science Foundation of ChinaProject(18YJCZH130)supported by the Humanities and Social Science Project of Chinese Ministry of Education
文摘The traffic equilibrium assignment problem under tradable credit scheme(TCS) in a bi-modal stochastic transportation network is investigated in this paper. To describe traveler’s risk-taking behaviors under uncertainty, the cumulative prospect theory(CPT) is adopted. Travelers are assumed to choose the paths with the minimum perceived generalized path costs, consisting of time prospect value(PV) and monetary cost. At equilibrium with a given TCS, the endogenous reference points and credit price remain constant, and are consistent with the equilibrium flow pattern and the corresponding travel time distributions of road sub-network. To describe such an equilibrium state, the CPT-based stochastic user equilibrium(SUE) conditions can be formulated under TCS. An equivalent variational inequality(VI) model embedding a parameterized fixed point(FP) model is then established, with its properties analyzed theoretically. A heuristic solution algorithm is developed to solve the model, which contains two-layer iterations. The outer iteration is a bisection-based contraction method to find the equilibrium credit price, and the inner iteration is essentially the method of successive averages(MSA) to determine the corresponding CPT-based SUE network flow pattern. Numerical experiments are provided to validate the model and algorithm.