Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration(UF)process.In this study,a sulfonated-polyethersulfone(SPES)/nano-TiO2 composite UF membrane with ...Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration(UF)process.In this study,a sulfonated-polyethersulfone(SPES)/nano-TiO2 composite UF membrane with good anti-fouling performance was fabricated by phase inversion and self-assembly methods.The TiO2 nanoparticle self-assembly on the SPES membrane surface was confirmed by X-ray photoelectron spectroscopy (XPS)and FT-IR spectrometer.The morphology and hydrophilicity were characterized by scanning electron microscopy(SEM),atomic force microscopy(AFM)and contact angle goniometer,respectively.The anti-fouling mechanism of composite UF membrane was discussed through the analysis of the micro-structure and component of UF membrane surface.The results showed that the TiO2 content and the micro-structure of the composite UF membrane surface had great influence on the separation and anti-fouling performance.展开更多
The effects of two different hydrophilic additives and two solvents on the membrane morphological structure,permeability property and anti-fouling performances of cellulose acetate(CA) ultrafiltration membranes were i...The effects of two different hydrophilic additives and two solvents on the membrane morphological structure,permeability property and anti-fouling performances of cellulose acetate(CA) ultrafiltration membranes were investigated. During the phase-inversion process, cellulose acetate was selected as a membrane forming polymer; polyethylene glycol(PEG) and polyvinyl pyrrolidone(PVP) were used as additives; acetone(Ac): N,N-Dimethylacetamide(DMAc) and N, N-Dimethylformamide(DMF) were used as solvents; and deionized(DI)water was used in the coagulation bath. All the prepared membranes were characterized in terms of hydraulic permeability(Pm), membrane resistance, average pore radius, and hydrophilicity. The top surface and crosssectional view of the prepared membranes were also observed by using field emission scanning electron microscopy. Membrane fouling and rejection experimentations were done using a stirred batch-cell filtration set-up.The experimental studies of fouling/rinsing cycles, rejection, and permeate fluxes were used to investigate the effect of PEG and PVP additives and effect of the two solvents on the fabricated membranes using bovine serum albumin(BSA) as a model protein.展开更多
Bali Tourism Development Corporation's lagoon (BTDC lagoon) has been used for treating wastewaters that come from all facilities available in the Nusa Dua Resort tourist area. Reuse of the lagoon effluent is limite...Bali Tourism Development Corporation's lagoon (BTDC lagoon) has been used for treating wastewaters that come from all facilities available in the Nusa Dua Resort tourist area. Reuse of the lagoon effluent is limited for some applications due to salt and suspended solid contents. Application of an integrated membrane system for improving the water quality of the lagoon effluent which is suitable for various uses is under consideration. In this work an ultraflltration (UF) pilot performance for possible pretreatment of Reverse Osmosis (RO) was investigated. The results showed that permeate quality was stable (less than 0.5 NTU), regardless of concentrating and diluting retentate in each cycle and fouling for a long duration of operation. However, the water quality obtained with this membrane was not enough to be directly used. The permeate quality obtained from the UF system fulfils the requirement for the optimal operation of reverse osmosis. Moreover, appropriate intermittent-backwash operation was fairly effective to maintain the fluxes at a reasonable level.展开更多
The effect of hollow fiber module positions ( horizontal and vertical) on separation performance for PVA solution by using polyethersulfone (PES) hollow fiber ultrafiltration (UF) membrane with the molecular wei...The effect of hollow fiber module positions ( horizontal and vertical) on separation performance for PVA solution by using polyethersulfone (PES) hollow fiber ultrafiltration (UF) membrane with the molecular weight cut-off (MWCO) 30 000 has been discussed. Experimental results illustrated that the suitable operation conditions for PVA solution were as follows: trans-membrane pressure 2.1 bar, solution temperature 75℃ and feed velocity 0.32 m/s. Under these suitable operation conditions, the permeate flux is from 36.8 L/(m^2 ·h·bar) to 42.9 L/(m^2 ·h·bar) for the horizontal module and from 39.8 L/(m^2 ·h·bar) to 66.6 L/(m^2 ·h·bar) for the vertical module. Besides, the Separation performance of PES hollow fiber UF membrane was better by using vertical hollow fiber module than by using horizontal hollow fiber module. When the trans-membrane pressure increased from 1 bar to 2.1 bar, solution temperature from 50 ℃ to 75 ℃, feed solution velocity from 0.16 m/s to 0.32 m/s, the PVA rejection would increase from 95.8% to 99.7%, 95.4 96 to 98.6 %, 95.8 96 to 99.2 96 for horizontal module respectively, and from 98.8 96 to 99.8 %, 98.6 96 to 99.4 96, 98.5 96 to 99.4 96 for vertical module respectively. Therefore, PVA rejection in PES hollow fiber UF process was more than 98.5 96 for vertical module, and it is suitable for PVA recovery from wastewater.展开更多
Graphene oxide(GO) has been demonstrated to be an effective hydrophilic nanofiller to modify the polymeric membranes when forming a mixed matrix structure. GO quantum dots(QDs) are promising candidates to fully exert ...Graphene oxide(GO) has been demonstrated to be an effective hydrophilic nanofiller to modify the polymeric membranes when forming a mixed matrix structure. GO quantum dots(QDs) are promising candidates to fully exert the rich oxygen containing functional groups due to their unique size induced edge effects. In this work, GO QDs modified polysulfone(PSF) ultrafiltration(UF) membranes were prepared by phase inversion method with various GO QDs loadings(0.1–0.5 wt.%). A proper amount of GO QDs addition led to a more porous and hydrophilic membrane structure. With 0.3 wt.% GO QDs, the membranes showed a60% increase in permeability(130.54 vs. 82.52 LMH bar^-1).The pristine PSF membranes had a complete cutoff of bovine serum albumin molecules and it was well maintained with GO QDs incorporated. The membranes with 0.5 wt.% GO QDs exhibited the highest flux recovery ratio of 89.7% and the lowest irreversible fouling of 10.3%(54.5% and 33.3% for the pristine PSF membranes). Our results proved that GO QDs can function as effective nanofillers to enhance the hydrophilicity, permeability and antifouling performance of PSF UF membranes.展开更多
基金Supported by the Natural Science Foundation of Shandong Province(Q2007B01)
文摘Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration(UF)process.In this study,a sulfonated-polyethersulfone(SPES)/nano-TiO2 composite UF membrane with good anti-fouling performance was fabricated by phase inversion and self-assembly methods.The TiO2 nanoparticle self-assembly on the SPES membrane surface was confirmed by X-ray photoelectron spectroscopy (XPS)and FT-IR spectrometer.The morphology and hydrophilicity were characterized by scanning electron microscopy(SEM),atomic force microscopy(AFM)and contact angle goniometer,respectively.The anti-fouling mechanism of composite UF membrane was discussed through the analysis of the micro-structure and component of UF membrane surface.The results showed that the TiO2 content and the micro-structure of the composite UF membrane surface had great influence on the separation and anti-fouling performance.
文摘The effects of two different hydrophilic additives and two solvents on the membrane morphological structure,permeability property and anti-fouling performances of cellulose acetate(CA) ultrafiltration membranes were investigated. During the phase-inversion process, cellulose acetate was selected as a membrane forming polymer; polyethylene glycol(PEG) and polyvinyl pyrrolidone(PVP) were used as additives; acetone(Ac): N,N-Dimethylacetamide(DMAc) and N, N-Dimethylformamide(DMF) were used as solvents; and deionized(DI)water was used in the coagulation bath. All the prepared membranes were characterized in terms of hydraulic permeability(Pm), membrane resistance, average pore radius, and hydrophilicity. The top surface and crosssectional view of the prepared membranes were also observed by using field emission scanning electron microscopy. Membrane fouling and rejection experimentations were done using a stirred batch-cell filtration set-up.The experimental studies of fouling/rinsing cycles, rejection, and permeate fluxes were used to investigate the effect of PEG and PVP additives and effect of the two solvents on the fabricated membranes using bovine serum albumin(BSA) as a model protein.
文摘Bali Tourism Development Corporation's lagoon (BTDC lagoon) has been used for treating wastewaters that come from all facilities available in the Nusa Dua Resort tourist area. Reuse of the lagoon effluent is limited for some applications due to salt and suspended solid contents. Application of an integrated membrane system for improving the water quality of the lagoon effluent which is suitable for various uses is under consideration. In this work an ultraflltration (UF) pilot performance for possible pretreatment of Reverse Osmosis (RO) was investigated. The results showed that permeate quality was stable (less than 0.5 NTU), regardless of concentrating and diluting retentate in each cycle and fouling for a long duration of operation. However, the water quality obtained with this membrane was not enough to be directly used. The permeate quality obtained from the UF system fulfils the requirement for the optimal operation of reverse osmosis. Moreover, appropriate intermittent-backwash operation was fairly effective to maintain the fluxes at a reasonable level.
文摘The effect of hollow fiber module positions ( horizontal and vertical) on separation performance for PVA solution by using polyethersulfone (PES) hollow fiber ultrafiltration (UF) membrane with the molecular weight cut-off (MWCO) 30 000 has been discussed. Experimental results illustrated that the suitable operation conditions for PVA solution were as follows: trans-membrane pressure 2.1 bar, solution temperature 75℃ and feed velocity 0.32 m/s. Under these suitable operation conditions, the permeate flux is from 36.8 L/(m^2 ·h·bar) to 42.9 L/(m^2 ·h·bar) for the horizontal module and from 39.8 L/(m^2 ·h·bar) to 66.6 L/(m^2 ·h·bar) for the vertical module. Besides, the Separation performance of PES hollow fiber UF membrane was better by using vertical hollow fiber module than by using horizontal hollow fiber module. When the trans-membrane pressure increased from 1 bar to 2.1 bar, solution temperature from 50 ℃ to 75 ℃, feed solution velocity from 0.16 m/s to 0.32 m/s, the PVA rejection would increase from 95.8% to 99.7%, 95.4 96 to 98.6 %, 95.8 96 to 99.2 96 for horizontal module respectively, and from 98.8 96 to 99.8 %, 98.6 96 to 99.4 96, 98.5 96 to 99.4 96 for vertical module respectively. Therefore, PVA rejection in PES hollow fiber UF process was more than 98.5 96 for vertical module, and it is suitable for PVA recovery from wastewater.
基金supported by Beijing Natural Science Foundation(2172027)
文摘Graphene oxide(GO) has been demonstrated to be an effective hydrophilic nanofiller to modify the polymeric membranes when forming a mixed matrix structure. GO quantum dots(QDs) are promising candidates to fully exert the rich oxygen containing functional groups due to their unique size induced edge effects. In this work, GO QDs modified polysulfone(PSF) ultrafiltration(UF) membranes were prepared by phase inversion method with various GO QDs loadings(0.1–0.5 wt.%). A proper amount of GO QDs addition led to a more porous and hydrophilic membrane structure. With 0.3 wt.% GO QDs, the membranes showed a60% increase in permeability(130.54 vs. 82.52 LMH bar^-1).The pristine PSF membranes had a complete cutoff of bovine serum albumin molecules and it was well maintained with GO QDs incorporated. The membranes with 0.5 wt.% GO QDs exhibited the highest flux recovery ratio of 89.7% and the lowest irreversible fouling of 10.3%(54.5% and 33.3% for the pristine PSF membranes). Our results proved that GO QDs can function as effective nanofillers to enhance the hydrophilicity, permeability and antifouling performance of PSF UF membranes.