To reduce energy consumption in cloud data centres,in this paper,we propose two algorithms called the Energy-aware Scheduling algorithm using Workload-aware Consolidation Technique(ESWCT) and the Energyaware Live Migr...To reduce energy consumption in cloud data centres,in this paper,we propose two algorithms called the Energy-aware Scheduling algorithm using Workload-aware Consolidation Technique(ESWCT) and the Energyaware Live Migration algorithm using Workload-aware Consolidation Technique(ELMWCT).As opposed to traditional energy-aware scheduling algorithms,which often focus on only one-dimensional resource,the two algorithms are based on the fact that multiple resources(such as CPU,memory and network bandwidth)are shared by users concurrently in cloud data centres and heterogeneous workloads have different resource consumption characteristics.Both algorithms investigate the problem of consolidating heterogeneous workloads.They try to execute all Virtual Machines(VMs) with the minimum amount of Physical Machines(PMs),and then power off unused physical servers to reduce power consumption.Simulation results show that both algorithms efficiently utilise the resources in cloud data centres,and the multidimensional resources have good balanced utilizations,which demonstrate their promising energy saving capability.展开更多
Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of ...Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of vertical reinforcement elements in the same soil ground. Via the analysis of the collected data the characteristics of the composite foundation with different reinforcing elements were obtained, including the characteristics of load-settlement curves, column stresses, stresses of the intercolumn soil, pile-soil stress ratio, and load-sharing ratios of columns and soil. Results from the model tests reveal the mechanism of a composite foundation with different reinforcing elements quantitatively. It is concluded that both a composite foundation with a combination of steel pipe pile and sand column and that with a combination of concrete pile and lime column have a higher bearing capacity than the composite foundation with only sand columns with the same conditions of soil ground and loading. A composite foundation with lime column and sand column embodies no much better performance than that with sand colunms only.展开更多
基金supported by the Opening Project of State key Laboratory of Networking and Switching Technology under Grant No.SKLNST-2010-1-03the National Natural Science Foundation of China under Grants No.U1333113,No.61303204+1 种基金the Sichuan Province seedling project under Grant No.2012ZZ036the Scientific Research Fund of Sichuan Normal University under Grant No.13KYL06
文摘To reduce energy consumption in cloud data centres,in this paper,we propose two algorithms called the Energy-aware Scheduling algorithm using Workload-aware Consolidation Technique(ESWCT) and the Energyaware Live Migration algorithm using Workload-aware Consolidation Technique(ELMWCT).As opposed to traditional energy-aware scheduling algorithms,which often focus on only one-dimensional resource,the two algorithms are based on the fact that multiple resources(such as CPU,memory and network bandwidth)are shared by users concurrently in cloud data centres and heterogeneous workloads have different resource consumption characteristics.Both algorithms investigate the problem of consolidating heterogeneous workloads.They try to execute all Virtual Machines(VMs) with the minimum amount of Physical Machines(PMs),and then power off unused physical servers to reduce power consumption.Simulation results show that both algorithms efficiently utilise the resources in cloud data centres,and the multidimensional resources have good balanced utilizations,which demonstrate their promising energy saving capability.
基金Project (No.50478090) supported by the National Natural Science Foundation of China
文摘Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of vertical reinforcement elements in the same soil ground. Via the analysis of the collected data the characteristics of the composite foundation with different reinforcing elements were obtained, including the characteristics of load-settlement curves, column stresses, stresses of the intercolumn soil, pile-soil stress ratio, and load-sharing ratios of columns and soil. Results from the model tests reveal the mechanism of a composite foundation with different reinforcing elements quantitatively. It is concluded that both a composite foundation with a combination of steel pipe pile and sand column and that with a combination of concrete pile and lime column have a higher bearing capacity than the composite foundation with only sand columns with the same conditions of soil ground and loading. A composite foundation with lime column and sand column embodies no much better performance than that with sand colunms only.