期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于无人机和遥感技术的蔬菜表型信息采集与监测研究
1
作者 班甜甜 蔡家斌 +1 位作者 马超 陈跃威 《南方农机》 2024年第12期30-32,54,共4页
【目的】基于无人机与遥感技术,致力于实现蔬菜生长动态的精确监测与信息采集。【方法】通过搭载多光谱和热红外传感器的无人机,构建了高效的低空遥感系统,能够获取高辨识度的影像数据。针对蔬菜的表型特征提取,采用了先进的数字图像分... 【目的】基于无人机与遥感技术,致力于实现蔬菜生长动态的精确监测与信息采集。【方法】通过搭载多光谱和热红外传感器的无人机,构建了高效的低空遥感系统,能够获取高辨识度的影像数据。针对蔬菜的表型特征提取,采用了先进的数字图像分析和机器学习方法,实现了对单株植株的分割与参数测量。基于多时相信息,运用LSTM等模型构建了精准的生长预测模型。【结果】在贵州清镇地区的标准化蔬菜高效生产基地进行的三年连续监测表明:1)本研究所提出的技术路线能够有效实时获取高分辨率影像,实现了高精度的表型参数提取和生长状态预测,平均相对误差控制在6%以内。2)基于多时相信息,构建的LSTM模型可以较好地模拟和预测蔬菜的生长曲线,验证集上的R~2和RMSE分别达到0.89和3.6。3)空间分布结果表明,研究区内结球白菜样本点LAI的变异系数为0.074,达到较高的生长均匀性。【结论】本研究构建的监测系统能够为蔬菜的生长全过程提供精密化监测,为设施农业的数字化管理与智能控制提供有力支撑。 展开更多
关键词 无人机遥感 蔬菜生长监测 表型特征提取 生长预测
在线阅读 下载PDF
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
2
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based mod‐els that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of fea‐tures,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model con‐tinued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart to‐mato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部