Numerical simulation and experimental results were employed for the identification of the most vulnerable zones in three-pass cold-metal-transferring (CMT) welded joint. The residual stress distribution in the joint...Numerical simulation and experimental results were employed for the identification of the most vulnerable zones in three-pass cold-metal-transferring (CMT) welded joint. The residual stress distribution in the joint was predicted by finite element (FE) method, while the structural morphology of distinctive zones was obtained through metallographic experiments. The highest principal stress made the symmetric face of the joint most sensitive to tensile cracks under service conditions. Whereas, the boundaries between the weld seam and the base plates were sensitive to cracks because the equivalent von Mises stress was the highest when the first interpass cooling was finished. The third weld pass and the inter-pass remelted zones exhibited the modest mechanical performances as a result of the coarse grain and coarse grain boundary, respectively. The most vulnerable zones were regarded to be the crossed parts between the zones identified by numerical and experimental methods.展开更多
Bus and any other public transit connectivity issues facilitate an understanding of the importance of transit planning in enhancing existing or new transit services. Improving transit connectivity is one of the most v...Bus and any other public transit connectivity issues facilitate an understanding of the importance of transit planning in enhancing existing or new transit services. Improving transit connectivity is one of the most vital tasks in transit-operations planning. A poor connection can cause some passengers to stop using the transit service. Service-design criteria always contain postulates to improve routing and scheduling coordination (intra- and inter-agency transfer centers/points and synchronized/timed transfers). Ostensibly the lack of well-defined connectivity measures precludes the weighing and quantifying of the result of any coordination effort. This work provides an initial methodological framework and concepts for (1) quantifying transit connectivity measures and (2) directions and tools for detecting weak segments in inter-route and inter-modal chains (paths) for possible revisions/changes.展开更多
基金Project(9140C850205120C8501)supported by the Major Program of State Key Laboratory of Remanufacturing,China
文摘Numerical simulation and experimental results were employed for the identification of the most vulnerable zones in three-pass cold-metal-transferring (CMT) welded joint. The residual stress distribution in the joint was predicted by finite element (FE) method, while the structural morphology of distinctive zones was obtained through metallographic experiments. The highest principal stress made the symmetric face of the joint most sensitive to tensile cracks under service conditions. Whereas, the boundaries between the weld seam and the base plates were sensitive to cracks because the equivalent von Mises stress was the highest when the first interpass cooling was finished. The third weld pass and the inter-pass remelted zones exhibited the modest mechanical performances as a result of the coarse grain and coarse grain boundary, respectively. The most vulnerable zones were regarded to be the crossed parts between the zones identified by numerical and experimental methods.
文摘Bus and any other public transit connectivity issues facilitate an understanding of the importance of transit planning in enhancing existing or new transit services. Improving transit connectivity is one of the most vital tasks in transit-operations planning. A poor connection can cause some passengers to stop using the transit service. Service-design criteria always contain postulates to improve routing and scheduling coordination (intra- and inter-agency transfer centers/points and synchronized/timed transfers). Ostensibly the lack of well-defined connectivity measures precludes the weighing and quantifying of the result of any coordination effort. This work provides an initial methodological framework and concepts for (1) quantifying transit connectivity measures and (2) directions and tools for detecting weak segments in inter-route and inter-modal chains (paths) for possible revisions/changes.