In this study, two full-size concrete wails were tested and analyzed to demonstrate the effectiveness of a chemically reactive enamel (CRE) coating in improving their mechanical behavior under blast loading: one wi...In this study, two full-size concrete wails were tested and analyzed to demonstrate the effectiveness of a chemically reactive enamel (CRE) coating in improving their mechanical behavior under blast loading: one with CRE-coated rebar and the other with uncoated rebar. Each wall was subjected in sequence to four explosive loads with equivalent 2, 4, 6-trinitrotoluene (TNT) charge weights of 1.82, 4.54, 13.6, and 20.4 kg. A finite element model of each wall under a close-in blast load was developed and validated with pressure and strain measurements, and used to predict rebar stresses and concrete surface sWain distributions of the wall. The test results and visual inspections consistently indicated that, compared with the barrier wall with uncoated reinforcement, the wall with CRE-coated rebar has fewer concrete cracks on the front and back faces, more effective stress transfers from concrete to steel rebar, and stronger connections with its concrete base. The concrete surface strain distributions predicted by the model under various loading conditions are in good agreement with the crack patterns observed during the tests.展开更多
Corrosion of reinforcement has a significant effect on the deformation of reinforced concrete beams by deteriorating the bond-slip characteristics, diminishing the cross-sectional area of reinforcement, and causing cr...Corrosion of reinforcement has a significant effect on the deformation of reinforced concrete beams by deteriorating the bond-slip characteristics, diminishing the cross-sectional area of reinforcement, and causing cracking. The traditional way of quantifying the load capacity and simulating deflection is the moment-curvature(M/χ) approach. The problem is that the M/χ approach is semi-empirical after cracking as it is strain-based and cannot allow for tension stiffening. This paper introduces the new displacement-based moment-rotation(M/θ) approach which directly simulates the development of cracks and hence allows for tension stiffening. This M/θ approach is then used to predict the load-deflection behavior of reinforced concrete beams with corrosion effect by incorporating the corrosion-affected bond-slip model. The bond-slip model only considers the corrosion effect but ignores the confinement effect. It is used here as an example to describe the procedure of how to quantify the corrosion effect on reinforced concrete beam behavior. The load-deflection curves obtained from the numerical simulation show a good agreement with test results. For reinforced concrete beams with confinement, the only difference is to replace the bond-slip model with the one which includes both corrosion and stirrup effects. Additionally, the paper shows how to use the M/θ approach with the bond-slip model to predict the real corrosion level of reinforcement in some tests in which only the theoretical corrosion levels are provided.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 51379186 and 51522905), the Zhejiang Provincial Natural Science Foundation of China (No. LR15E090001), and the Leonard Wood Institute under Award (No. LWI61009), USA
文摘In this study, two full-size concrete wails were tested and analyzed to demonstrate the effectiveness of a chemically reactive enamel (CRE) coating in improving their mechanical behavior under blast loading: one with CRE-coated rebar and the other with uncoated rebar. Each wall was subjected in sequence to four explosive loads with equivalent 2, 4, 6-trinitrotoluene (TNT) charge weights of 1.82, 4.54, 13.6, and 20.4 kg. A finite element model of each wall under a close-in blast load was developed and validated with pressure and strain measurements, and used to predict rebar stresses and concrete surface sWain distributions of the wall. The test results and visual inspections consistently indicated that, compared with the barrier wall with uncoated reinforcement, the wall with CRE-coated rebar has fewer concrete cracks on the front and back faces, more effective stress transfers from concrete to steel rebar, and stronger connections with its concrete base. The concrete surface strain distributions predicted by the model under various loading conditions are in good agreement with the crack patterns observed during the tests.
基金Project supported by the National Natural Science Foundation of China(No.51478422)。
文摘Corrosion of reinforcement has a significant effect on the deformation of reinforced concrete beams by deteriorating the bond-slip characteristics, diminishing the cross-sectional area of reinforcement, and causing cracking. The traditional way of quantifying the load capacity and simulating deflection is the moment-curvature(M/χ) approach. The problem is that the M/χ approach is semi-empirical after cracking as it is strain-based and cannot allow for tension stiffening. This paper introduces the new displacement-based moment-rotation(M/θ) approach which directly simulates the development of cracks and hence allows for tension stiffening. This M/θ approach is then used to predict the load-deflection behavior of reinforced concrete beams with corrosion effect by incorporating the corrosion-affected bond-slip model. The bond-slip model only considers the corrosion effect but ignores the confinement effect. It is used here as an example to describe the procedure of how to quantify the corrosion effect on reinforced concrete beam behavior. The load-deflection curves obtained from the numerical simulation show a good agreement with test results. For reinforced concrete beams with confinement, the only difference is to replace the bond-slip model with the one which includes both corrosion and stirrup effects. Additionally, the paper shows how to use the M/θ approach with the bond-slip model to predict the real corrosion level of reinforcement in some tests in which only the theoretical corrosion levels are provided.