为提高传统压缩感知(CS)恢复算法的抗噪性能,结合观测矩阵优化和自适应观测的思想,提出一种自适应压缩感知(ACS)算法。该算法将观测能量全部分配在由传统CS恢复算法估计的支撑位置,由于估计支撑集中包含支撑位置,这样可有效提高观测信噪...为提高传统压缩感知(CS)恢复算法的抗噪性能,结合观测矩阵优化和自适应观测的思想,提出一种自适应压缩感知(ACS)算法。该算法将观测能量全部分配在由传统CS恢复算法估计的支撑位置,由于估计支撑集中包含支撑位置,这样可有效提高观测信噪比(SNR);再从优化观测矩阵的角度推导出最优的新观测向量,即其非零部分设计为Gram矩阵的特征向量。仿真结果表明,随着观测数增大,Gram矩阵非对角元素的能量增速小于传统CS算法,并且分别在观测次数、稀疏度和SNR相同的条件下,所提算法的重构归一化均方误差低于传统CS恢复算法10 d B以上,低于典型的贝叶斯方法 5 d B以上。分析表明,所提自适应观测机制可有效提高传统CS恢复算法的能量利用效率和抗噪性能。展开更多
自适应压缩感知与处理方法(Adaptive Compressive Sensing and Processing,ACSP)能够减少计算负荷,但现有的基于自适应压缩感知与处理的雷达目标跟踪方法仅限于单目标的跟踪,针对该问题,提出将自适应压缩感知用于雷达多目标追踪。通过...自适应压缩感知与处理方法(Adaptive Compressive Sensing and Processing,ACSP)能够减少计算负荷,但现有的基于自适应压缩感知与处理的雷达目标跟踪方法仅限于单目标的跟踪,针对该问题,提出将自适应压缩感知用于雷达多目标追踪。通过对回波进行稀疏表示,设计改进字典(稀疏变换矩阵)。在测量过程中,采用自适应权重替代随机高斯矩阵,构造和配置感知矩阵,基于压缩感知采样的接收数据来建立测量模型。由于测量与目标状态的非线性关系,采用结合联合概率数据关联方法的似然粒子滤波器对目标状态实时顺序估计,从而克服了多目标跟踪中的数据关联问题。理论仿真实验结果表明,改进的自适应压缩感知与处理方法实现了对多目标跟踪。展开更多
Efficient and precise localization is a prerequisite for the intelligent navigation of mobile robots. Traditional visual localization systems, such as visual odometry (VO) and simultaneous localization and mapping ...Efficient and precise localization is a prerequisite for the intelligent navigation of mobile robots. Traditional visual localization systems, such as visual odometry (VO) and simultaneous localization and mapping (SLAM), suffer from two shortcomings: a drift problem caused by accumulated localization error, and erroneous motion estimation due to illumination variation and moving objects. In this paper, we propose an enhanced VO by introducing a panoramic camera into the traditional stereo-only VO system. Benefiting from the 360° field of view, the panoramic camera is responsible for three tasks: (1) detect- ing road junctions and building a landmark library online; (2) correcting the robot's position when the landmarks are revisited with any orientation; (3) working as a panoramic compass when the stereo VO cannot provide reliable positioning results. To use the large-sized panoramic images efficiently, the concept of compressed sensing is introduced into the solution and an adap- tive compressive feature is presented. Combined with our previous two-stage local binocular bundle adjustment (TLBBA) stereo VO, the new system can obtain reliable positioning results in quasi-real time. Experimental results of challenging long-range tests show that our enhanced VO is much more accurate and robust than the traditional VO, thanks to the compressive panoramic landmarks built online.展开更多
文摘为提高传统压缩感知(CS)恢复算法的抗噪性能,结合观测矩阵优化和自适应观测的思想,提出一种自适应压缩感知(ACS)算法。该算法将观测能量全部分配在由传统CS恢复算法估计的支撑位置,由于估计支撑集中包含支撑位置,这样可有效提高观测信噪比(SNR);再从优化观测矩阵的角度推导出最优的新观测向量,即其非零部分设计为Gram矩阵的特征向量。仿真结果表明,随着观测数增大,Gram矩阵非对角元素的能量增速小于传统CS算法,并且分别在观测次数、稀疏度和SNR相同的条件下,所提算法的重构归一化均方误差低于传统CS恢复算法10 d B以上,低于典型的贝叶斯方法 5 d B以上。分析表明,所提自适应观测机制可有效提高传统CS恢复算法的能量利用效率和抗噪性能。
文摘自适应压缩感知与处理方法(Adaptive Compressive Sensing and Processing,ACSP)能够减少计算负荷,但现有的基于自适应压缩感知与处理的雷达目标跟踪方法仅限于单目标的跟踪,针对该问题,提出将自适应压缩感知用于雷达多目标追踪。通过对回波进行稀疏表示,设计改进字典(稀疏变换矩阵)。在测量过程中,采用自适应权重替代随机高斯矩阵,构造和配置感知矩阵,基于压缩感知采样的接收数据来建立测量模型。由于测量与目标状态的非线性关系,采用结合联合概率数据关联方法的似然粒子滤波器对目标状态实时顺序估计,从而克服了多目标跟踪中的数据关联问题。理论仿真实验结果表明,改进的自适应压缩感知与处理方法实现了对多目标跟踪。
基金Project supported by the National Natural Science Foundation of China (Nos. 61071219 and 90820306) and the Fundamental Research Funds for the Central Universities, China
文摘Efficient and precise localization is a prerequisite for the intelligent navigation of mobile robots. Traditional visual localization systems, such as visual odometry (VO) and simultaneous localization and mapping (SLAM), suffer from two shortcomings: a drift problem caused by accumulated localization error, and erroneous motion estimation due to illumination variation and moving objects. In this paper, we propose an enhanced VO by introducing a panoramic camera into the traditional stereo-only VO system. Benefiting from the 360° field of view, the panoramic camera is responsible for three tasks: (1) detect- ing road junctions and building a landmark library online; (2) correcting the robot's position when the landmarks are revisited with any orientation; (3) working as a panoramic compass when the stereo VO cannot provide reliable positioning results. To use the large-sized panoramic images efficiently, the concept of compressed sensing is introduced into the solution and an adap- tive compressive feature is presented. Combined with our previous two-stage local binocular bundle adjustment (TLBBA) stereo VO, the new system can obtain reliable positioning results in quasi-real time. Experimental results of challenging long-range tests show that our enhanced VO is much more accurate and robust than the traditional VO, thanks to the compressive panoramic landmarks built online.