The arguments in this paper lead to a new definition of thermodynamic equilibrium that remedies the deficiencies of the current forms. This definition relates thermodynamic equilibrium to its physical causes and accou...The arguments in this paper lead to a new definition of thermodynamic equilibrium that remedies the deficiencies of the current forms. This definition relates thermodynamic equilibrium to its physical causes and accounts for all factors that determine it for all types of equilibrium. Standard definitions of thermodynamic equilibrium are incomplete. They do not take account of all factors that determine such equilibriums, discuss the impediments which may prevent them being reached or relate the properties that define equilibriums to the physical reasons that determine them when impediments are present. The laws of thermodynamics determine the requirements for equilibrium. These laws arise from the physical behaviour of the molecules in molecular systems and are consequences of the conservation of energy, the energies of molecules, statistics, Newton's laws of motion, and the equi-partition of energy. The standard definition of thermodynamic equilibrium correctly defines equilibrium whenever impediments are not factors. The discussion demonstrates how impediments arise, accounts for their role in defining equilibrium and how they relate to the energies of molecules at the conditions of the system. The new definition applies to all types of equilibrium.展开更多
The law of conservation of energy is one of the most fundamental laws of nature.According to the law of the conservation of energy,the non-linear and non-conservative quasi-variational principle of flexible body dynam...The law of conservation of energy is one of the most fundamental laws of nature.According to the law of the conservation of energy,the non-linear and non-conservative quasi-variational principle of flexible body dynamics is established.The physical meaning of the quasi-stationary value conditions has been explained in non-linear and non-conservative flexible body dynamics.In the case study,the application in spacecraft dynamics is researched.展开更多
Based on a general variational principle, Einstein–Hilbert action and sound facts from geometry, it is shown that the long existing pseudotensor, non-localizability problem of gravitational energy-momentum is a resul...Based on a general variational principle, Einstein–Hilbert action and sound facts from geometry, it is shown that the long existing pseudotensor, non-localizability problem of gravitational energy-momentum is a result of mistaking different geometrical, physical ob jects as one and the same. It is also pointed out that in a curved spacetime, the sum vector of matter energy-momentum over a finite hyper-surface can not be defined. In curvilinear coordinate systems conservation of matter energy-momentum is not the continuity equations for its components. Conservation of matter energy-momentum is the vanishing of the covariant divergence of its density-flux tensor field. Introducing gravitational energy-momentum to save the law of conservation of energy-momentum is unnecessary and improper. After reasonably defining "change of a particle's energy-momentum", we show that gravitational field does not exchange energy-momentum with particles. And it does not exchange energy-momentum with matter fields either. Therefore, the gravitational field does not carry energy-momentum, it is not a force field and gravity is not a natural force.展开更多
文摘The arguments in this paper lead to a new definition of thermodynamic equilibrium that remedies the deficiencies of the current forms. This definition relates thermodynamic equilibrium to its physical causes and accounts for all factors that determine it for all types of equilibrium. Standard definitions of thermodynamic equilibrium are incomplete. They do not take account of all factors that determine such equilibriums, discuss the impediments which may prevent them being reached or relate the properties that define equilibriums to the physical reasons that determine them when impediments are present. The laws of thermodynamics determine the requirements for equilibrium. These laws arise from the physical behaviour of the molecules in molecular systems and are consequences of the conservation of energy, the energies of molecules, statistics, Newton's laws of motion, and the equi-partition of energy. The standard definition of thermodynamic equilibrium correctly defines equilibrium whenever impediments are not factors. The discussion demonstrates how impediments arise, accounts for their role in defining equilibrium and how they relate to the energies of molecules at the conditions of the system. The new definition applies to all types of equilibrium.
基金supported by the National Natural Science Foundation of China(Grant No.10272034)the Fundamental Research Funds for the Central Universities of China(Grant No.HEUCF130205)
文摘The law of conservation of energy is one of the most fundamental laws of nature.According to the law of the conservation of energy,the non-linear and non-conservative quasi-variational principle of flexible body dynamics is established.The physical meaning of the quasi-stationary value conditions has been explained in non-linear and non-conservative flexible body dynamics.In the case study,the application in spacecraft dynamics is researched.
文摘Based on a general variational principle, Einstein–Hilbert action and sound facts from geometry, it is shown that the long existing pseudotensor, non-localizability problem of gravitational energy-momentum is a result of mistaking different geometrical, physical ob jects as one and the same. It is also pointed out that in a curved spacetime, the sum vector of matter energy-momentum over a finite hyper-surface can not be defined. In curvilinear coordinate systems conservation of matter energy-momentum is not the continuity equations for its components. Conservation of matter energy-momentum is the vanishing of the covariant divergence of its density-flux tensor field. Introducing gravitational energy-momentum to save the law of conservation of energy-momentum is unnecessary and improper. After reasonably defining "change of a particle's energy-momentum", we show that gravitational field does not exchange energy-momentum with particles. And it does not exchange energy-momentum with matter fields either. Therefore, the gravitational field does not carry energy-momentum, it is not a force field and gravity is not a natural force.