期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
杂波环境下机动输入序列和量测序列的联合最优估计 被引量:1
1
作者 朱洪艳 韩崇昭 +2 位作者 韩红 左东广 郑林 《西安交通大学学报》 EI CAS CSCD 北大核心 2003年第2期175-178,214,共5页
为了提高在杂波环境下跟踪强机动目标的精度,提出了一种新的基于期望极大化(EM)算法的机动目标状态估计方法.首先建立了基于EM算法的最大后验概率意义下的状态估计数学模型,然后采用离散优化技术解决EM算法中的极大化问题,最终确定出作... 为了提高在杂波环境下跟踪强机动目标的精度,提出了一种新的基于期望极大化(EM)算法的机动目标状态估计方法.首先建立了基于EM算法的最大后验概率意义下的状态估计数学模型,然后采用离散优化技术解决EM算法中的极大化问题,最终确定出作用于系统的实际机动输入序列,同时分离出源于目标的量测序列,进而获得对目标状态更精确的估计.它有效地解决了最大后验概率状态估计中的不完全数据问题.Monte Carlo仿真结果表明,新算法比传统的交互式多模型概率数据关联算法具有更优越的跟踪性能. 展开更多
关键词 杂波环境 机动输入序列 量测序列 联合最优估计 期望极大化算法 离散 机动目标跟踪 参数估计
在线阅读 下载PDF
Dynamic optimal strategy for monitoring disease recurrence 被引量:1
2
作者 LI Hong GATSONIS Constantine 《Science China Mathematics》 SCIE 2012年第8期1565-1582,共18页
Surveillance to detect cancer recurrence is an important part of care for cancer survivors.In this paper we discuss the design of optimal strategies for early detection of disease recurrence based on each patient'... Surveillance to detect cancer recurrence is an important part of care for cancer survivors.In this paper we discuss the design of optimal strategies for early detection of disease recurrence based on each patient's distinct biomarker trajectory and periodically updated risk estimated in the setting of a prospective cohort study.We adopt a latent class joint model which considers a longitudinal biomarker process and an event process jointly,to address heterogeneity of patients and disease,to discover distinct biomarker trajectory patterns,to classify patients into different risk groups,and to predict the risk of disease recurrence.The model is used to develop a monitoring strategy that dynamically modifies the monitoring intervals according to patients' current risk derived from periodically updated biomarker measurements and other indicators of disease spread.The optimal biomarker assessment time is derived using a utility function.We develop an algorithm to apply the proposed strategy to monitoring of new patients after initial treatment.We illustrate the models and the derivation of the optimal strategy using simulated data from monitoring prostate cancer recurrence over a 5-year period. 展开更多
关键词 biomarker trajectory cancer recurrence surveillance latent class model optimal strategy time-dependent hazard
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部