针对神经网络提取的信号特征不足导致信号识别率下降的问题,提出基于门控注意力网络的调制信号分类识别算法。该算法先对输入信号进行混合数据增强,生成更多维度的样本以便网络更好地提取信号特征;再将处理后的样本信号输入双通道网络(C...针对神经网络提取的信号特征不足导致信号识别率下降的问题,提出基于门控注意力网络的调制信号分类识别算法。该算法先对输入信号进行混合数据增强,生成更多维度的样本以便网络更好地提取信号特征;再将处理后的样本信号输入双通道网络(CNN and BiLSTM Parallel),并行提取信号的空间特征和时间特征;最后将提取到的特征输入到门控注意力网络中,自适应地调整特征权重,减少网络复杂度。实验表明,文中提出的算法最高分类准确率为92.3%,优于对比的其他网络模型。展开更多
文摘针对神经网络提取的信号特征不足导致信号识别率下降的问题,提出基于门控注意力网络的调制信号分类识别算法。该算法先对输入信号进行混合数据增强,生成更多维度的样本以便网络更好地提取信号特征;再将处理后的样本信号输入双通道网络(CNN and BiLSTM Parallel),并行提取信号的空间特征和时间特征;最后将提取到的特征输入到门控注意力网络中,自适应地调整特征权重,减少网络复杂度。实验表明,文中提出的算法最高分类准确率为92.3%,优于对比的其他网络模型。