为验证结构响应主动控制方法在直升机振动控制中的有效性,以某轻型直升机为验证机,基于具有在线识别功能的时域自适应控制算法,进行了直升机结构响应主动控制飞行试验研究。给出了飞行试验方法、试验系统组成、试验内容及其过程。通过...为验证结构响应主动控制方法在直升机振动控制中的有效性,以某轻型直升机为验证机,基于具有在线识别功能的时域自适应控制算法,进行了直升机结构响应主动控制飞行试验研究。给出了飞行试验方法、试验系统组成、试验内容及其过程。通过对飞行试验数据的处理分析,对减振效果进行了评估。试飞结果表明:ACSR(Active Control of Structure Response)系统对各测点的垂向振动均有减振效果,各速度状态下的全机垂向减振效率在30%~66%之间,巡航速度状态下具有最佳的减振效率;此外,各测点的侧向振动水平也有一定程度的减小。展开更多
The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a predicti...The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an object function,which has a function of self-compensation for time delay occurring in real application.A double-ended shear mode combined with a valve mode MR damper,named MRF-04K damper,with the maximum force of 20 kN was designed and manufactured,and parameters of the Bouc-Wen hysteresis model were determined to portray the behavior of this damper.As an example,a 5-story building frame equipped with 2 MRF-04K dampers was presented to demonstrate the performance of the proposed SAPC scheme for addressing time delay and reducing the structural responses under different earthquakes.Comparison with the uncontrolled structure,the passive-off and passive-on cases indicates that both the peak and the norm values of structural responses are all clearly reduced,and the SAPC scheme has a better performance than the two passive cases.展开更多
文摘为验证结构响应主动控制方法在直升机振动控制中的有效性,以某轻型直升机为验证机,基于具有在线识别功能的时域自适应控制算法,进行了直升机结构响应主动控制飞行试验研究。给出了飞行试验方法、试验系统组成、试验内容及其过程。通过对飞行试验数据的处理分析,对减振效果进行了评估。试飞结果表明:ACSR(Active Control of Structure Response)系统对各测点的垂向振动均有减振效果,各速度状态下的全机垂向减振效率在30%~66%之间,巡航速度状态下具有最佳的减振效率;此外,各测点的侧向振动水平也有一定程度的减小。
基金Projects(90815025,51178034) supported by the National Natural Science Foundation of China
文摘The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an object function,which has a function of self-compensation for time delay occurring in real application.A double-ended shear mode combined with a valve mode MR damper,named MRF-04K damper,with the maximum force of 20 kN was designed and manufactured,and parameters of the Bouc-Wen hysteresis model were determined to portray the behavior of this damper.As an example,a 5-story building frame equipped with 2 MRF-04K dampers was presented to demonstrate the performance of the proposed SAPC scheme for addressing time delay and reducing the structural responses under different earthquakes.Comparison with the uncontrolled structure,the passive-off and passive-on cases indicates that both the peak and the norm values of structural responses are all clearly reduced,and the SAPC scheme has a better performance than the two passive cases.