期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于光谱和图像特征的阔叶木材与针叶木材同时分类算法研究 被引量:5
1
作者 王承琨 赵鹏 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第6期1713-1721,共9页
木材是人们生活中必不可少的可再生资源,同时在建筑、工艺、家具、结构材料等方面有着举足轻重的地位。市场中常见的木材品种繁多,其品质和价格千差万别,使用智能化技术对木材进行正确的分类不仅可以防止不法商贩“以次充好”,也可以大... 木材是人们生活中必不可少的可再生资源,同时在建筑、工艺、家具、结构材料等方面有着举足轻重的地位。市场中常见的木材品种繁多,其品质和价格千差万别,使用智能化技术对木材进行正确的分类不仅可以防止不法商贩“以次充好”,也可以大幅度降低木材分类人员的工作难度。通过木材的遗传信息和解剖学信息可以得到较为准确的木材分类结果,这类方法识别工艺相对复杂,对非专业人员并不友好。借助木材切面的图像信息或光谱信息可以简单方便地对木材进行分类,然而由于不同种木材之间存在的近似性,这类方法往往分类精度不高或只适用于某些阔叶木材。提出了一种基于木材横切面图像信息和光谱信息的多特征木材分类算法,首先分别采集木材横切面的光谱信息以及图像信息;再使用Segnet图像分割方法将待分类样本分成含管孔木材和不含管孔木材两组,并对含管孔样本组中的木材进行管孔分割;然后对含管孔样本组中的木材提取管孔特征、光谱特征以及纹理特征,对无管孔样本组木材提取光谱特征和纹理特征;最后根据这些特征使用支持向量机分别对木材进行分类并记录其木材的分类结果,对分类结果不一致的样本使用相似性判据判断最佳分类结果。为了验证该方法的有效性,以20种常见的阔叶木材和针叶木材的混合样本集为研究对象,对其进行了分类。实验结果显示三种特征均可以对木材进行分类,单独使用光谱特征、纹理特征以及管孔特征对木材进行分类的最高正确率分别为93.00%,89.33%和69.23%,通过相似测度的判断后三个特征可以相互补充从而进一步提高木材的分类正确率,最高正确率可达98.00%。综上所述,该方法可以对包含阔叶木材和针叶木材的混合样本集中的木材进行分类,木材横切面的光谱特征、纹理特征以及管孔特征可以相互补充,从而使分类正确率进一步的提高。与目前的主流木材分类方法进行对比,发现该算法的分类正确率高于其他算法。 展开更多
关键词 木材树种识别 纹理特征 管孔特征 光谱特征 特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部