In this paper, spinor and vector decompositions of SU(2) gauge potential are presented and their equivalence is constructed using a simply proposal. We also obtain the action of Faddeev nonlinear 0(3) sigma model ...In this paper, spinor and vector decompositions of SU(2) gauge potential are presented and their equivalence is constructed using a simply proposal. We also obtain the action of Faddeev nonlinear 0(3) sigma model from the SU(2) mass/ve gauge field theory, which is proposed according to the gauge invariant principle. At last, the knot structure in SU(2) Chern-Simons filed theory is discussed in terms of the Φ-mapping topological current theory, The topological charge of the knot is characterized by the Hopf indices and the Brouwer degrees of Φ-mapping.展开更多
In this paper, we study the convergence rate of two-dimensional Baakakov operators with Jacobi-weights and the approximation equivalence theorem is obtained, making use of multivariate decompose skills and results of ...In this paper, we study the convergence rate of two-dimensional Baakakov operators with Jacobi-weights and the approximation equivalence theorem is obtained, making use of multivariate decompose skills and results of one-dimensional Baskakov operators.展开更多
We in this paper give a decomposition concerning the general matrix triplet over an arbitrary divisionring F with the same row or column numbers. We also design a practical algorithm for the decomposition of thematrix...We in this paper give a decomposition concerning the general matrix triplet over an arbitrary divisionring F with the same row or column numbers. We also design a practical algorithm for the decomposition of thematrix triplet. As applications, we present necessary and suficient conditions for the existence of the generalsolutions to the system of matrix equations DXA = C1, EXB = C2, F XC = C3 and the matrix equation AXD + BY E + CZF = Gover F. We give the expressions of the general solutions to the system and the matrix equation when thesolvability conditions are satisfied. Moreover, we present numerical examples to illustrate the results of thispaper. We also mention the other applications of the equivalence canonical form, for instance, for the compressionof color images.展开更多
We present our recent work on both linear and nonlinear data reduction methods and algorithms: for the linear case we discuss results on structure analysis of SVD of columnpartitioned matrices and sparse low-rank appr...We present our recent work on both linear and nonlinear data reduction methods and algorithms: for the linear case we discuss results on structure analysis of SVD of columnpartitioned matrices and sparse low-rank approximation; for the nonlinear case we investigate methods for nonlinear dimensionality reduction and manifold learning. The problems we address have attracted great deal of interest in data mining and machine learning.展开更多
Generalized balanced tournament designs(GBTDs) are an equivalent characterization of a class of equitable symbol weight codes. Motivated by the construction of GBTDs, we establish in this paper an asymptotic existence...Generalized balanced tournament designs(GBTDs) are an equivalent characterization of a class of equitable symbol weight codes. Motivated by the construction of GBTDs, we establish in this paper an asymptotic existence theorem for frame-GBTDs of type gnand block size k via decompositions of edge-colored complete digraphs into prescribed edge-colored subgraphs.展开更多
基金*The project supported by National Natural Science Foundation of China and the Doctoral Foundation of the Ministry of Education of China
文摘In this paper, spinor and vector decompositions of SU(2) gauge potential are presented and their equivalence is constructed using a simply proposal. We also obtain the action of Faddeev nonlinear 0(3) sigma model from the SU(2) mass/ve gauge field theory, which is proposed according to the gauge invariant principle. At last, the knot structure in SU(2) Chern-Simons filed theory is discussed in terms of the Φ-mapping topological current theory, The topological charge of the knot is characterized by the Hopf indices and the Brouwer degrees of Φ-mapping.
基金Supported by the Scientific Research Fund of Zhejiang Province Education Depart-ment(200700190) Supported by the Science Technique Planed Item of Taizhou City(063KY08)Supported by Major Scientific Research Fund of Taizhou University(09ZD08)
文摘In this paper, we study the convergence rate of two-dimensional Baakakov operators with Jacobi-weights and the approximation equivalence theorem is obtained, making use of multivariate decompose skills and results of one-dimensional Baskakov operators.
基金supported by National Natural Science Foundation of China (GrantNo. 60672160)the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20093108110001)+3 种基金the Scientific Research Innovation Foundation of Shanghai Municipal Education Commission (Grant No. 09YZ13)the Netherlands Organization for Scientific Research (NWO)Singapore MoE Tier 1 Research Grant RG60/07Shanghai Leading Academic Discipline Project (Grant No. J50101)
文摘We in this paper give a decomposition concerning the general matrix triplet over an arbitrary divisionring F with the same row or column numbers. We also design a practical algorithm for the decomposition of thematrix triplet. As applications, we present necessary and suficient conditions for the existence of the generalsolutions to the system of matrix equations DXA = C1, EXB = C2, F XC = C3 and the matrix equation AXD + BY E + CZF = Gover F. We give the expressions of the general solutions to the system and the matrix equation when thesolvability conditions are satisfied. Moreover, we present numerical examples to illustrate the results of thispaper. We also mention the other applications of the equivalence canonical form, for instance, for the compressionof color images.
基金This work was supported in part by the Special Funds for Major State Basic Research Projectsthe National Natural Science Foundation of China(Grants No.60372033 and 9901936)NSF CCR9901986,DMS 0311800.
文摘We present our recent work on both linear and nonlinear data reduction methods and algorithms: for the linear case we discuss results on structure analysis of SVD of columnpartitioned matrices and sparse low-rank approximation; for the nonlinear case we investigate methods for nonlinear dimensionality reduction and manifold learning. The problems we address have attracted great deal of interest in data mining and machine learning.
基金supported by National Natural Science Foundation of China(Grant Nos.11271280 and 11201328)Graduate Student Research and Innovation Program of Jiangsu Province(Grant No.CXZZ13 0794)
文摘Generalized balanced tournament designs(GBTDs) are an equivalent characterization of a class of equitable symbol weight codes. Motivated by the construction of GBTDs, we establish in this paper an asymptotic existence theorem for frame-GBTDs of type gnand block size k via decompositions of edge-colored complete digraphs into prescribed edge-colored subgraphs.