期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
高光谱影像光谱-空间多特征加权概率融合分类 被引量:24
1
作者 张春森 郑艺惟 +1 位作者 黄小兵 崔卫红 《测绘学报》 EI CSCD 北大核心 2015年第8期909-918,共10页
提出了一种基于光谱-空间多特征加权概率融合的高光谱影像分类方法。首先,利用最小噪声分离(minimum noise fraction,MNF)方法对高光谱影像进行降维和特征提取,并以得到的MNF特征影像作为光谱特征,联合灰度共生矩阵(gray level co-occur... 提出了一种基于光谱-空间多特征加权概率融合的高光谱影像分类方法。首先,利用最小噪声分离(minimum noise fraction,MNF)方法对高光谱影像进行降维和特征提取,并以得到的MNF特征影像作为光谱特征,联合灰度共生矩阵(gray level co-occurrence matrix,GLCM)提取的纹理特征、基于OFC算子建立的多尺度形态学特征以及采用连续最大角凸锥(sequential maximum angle convex cone,SMACC)提取的端元组分特征,组成3组光谱-空间特征;然后利用支持向量机(support vector machine,SVM)对每一组光谱-空间特征进行分类,得到每组特征的概率输出结果;最后,建立多特征加权概率融合模型,应用该模型将不同特征的概率输出结果进行加权融合,得到最终分类结果。为了验证该方法的有效性,利用ROSIS和AVIRIS影像进行试验,总体分类精度分别达到97.65%和96.62%。结果表明本文的方法不但较好地克服了传统基于单一特征高光谱影像分类的局限性,而且其分类效果也优于常规矢量叠加(vector stacking,VS)和概率融合的多特征分类方法,有效地改善了高光谱影像的分类结果。 展开更多
关键词 光谱-空间特征 概率融合 支持向量机 光谱 分类
在线阅读 下载PDF
融合光谱-空间多特征的高光谱影像张量特征提取 被引量:3
2
作者 薛志祥 余旭初 +1 位作者 谭熊 魏祥坡 《计算机工程》 CAS CSCD 北大核心 2018年第3期233-240,共8页
针对当前基于张量结构的特征提取方法不能充分利用高光谱影像多种光谱-空间特征的问题,提出一种融合光谱-空间多特征的高光谱影像张量特征提取方法。利用3D Gabor滤波器提取不同频率和方向的纹理特征,采用形态学属性滤波器提取不同属性... 针对当前基于张量结构的特征提取方法不能充分利用高光谱影像多种光谱-空间特征的问题,提出一种融合光谱-空间多特征的高光谱影像张量特征提取方法。利用3D Gabor滤波器提取不同频率和方向的纹理特征,采用形态学属性滤波器提取不同属性和尺度的形状特征,将高光谱影像光谱特征、纹理特征和形状特征结合为张量结构特征。在此基础上,利用局部张量判别分析方法增大同类特征张量之间的相似性以及异类张量间的差异性,得到融合多种空谱特征和判别信息的低维特征张量。使用Pavia University和Salinas影像数据集进行对比实验,结果表明,该方法能够有效保留影像空谱信息和类别间的判别信息,不仅可以提高分类精度,而且能够得到空间连续性更好的分类图。 展开更多
关键词 光谱影像 光谱-空间特征 特征 张量判别分析 特征提取
在线阅读 下载PDF
利用概率融合光谱-空间特征地物分类模型对高分影像地物进行提取 被引量:1
3
作者 黄小兵 罗新伟 杨志鹏 《北京测绘》 2017年第5期34-40,72,共8页
本文提出了一个联合光谱-空间多特征的基于支持向量机的分类器模型,首先将三类光谱-空间特征利用支持向量机对高分影像进行分类,然后将分类结果利用概率融合的方法进行整合,最终完成了地物的提取。试验结果显示,相比于VS-SVM算法,该模... 本文提出了一个联合光谱-空间多特征的基于支持向量机的分类器模型,首先将三类光谱-空间特征利用支持向量机对高分影像进行分类,然后将分类结果利用概率融合的方法进行整合,最终完成了地物的提取。试验结果显示,相比于VS-SVM算法,该模型取得了更好的提取效果。 展开更多
关键词 光谱-空间特征 高分辨率影像 概率融合
在线阅读 下载PDF
基于空间金字塔注意力机制残差网络的高光谱图像分类
4
作者 刘和 宋璎珞 +3 位作者 胡龙湘 刘国辉 王侃 王爱丽 《液晶与显示》 CAS CSCD 北大核心 2024年第6期833-843,共11页
为了提取高光谱图像的空间-光谱联合特征,本文提出了一种基于改进的空间金字塔注意力机制残差网络的高光谱图像分类模型。首先采用主成分分析法去除光谱冗余,结合空间金字塔注意力机制,改进残差网络的高光谱图像分类模型获取精细化特征... 为了提取高光谱图像的空间-光谱联合特征,本文提出了一种基于改进的空间金字塔注意力机制残差网络的高光谱图像分类模型。首先采用主成分分析法去除光谱冗余,结合空间金字塔注意力机制,改进残差网络的高光谱图像分类模型获取精细化特征。然后利用空间金字塔注意力模型实现多尺度联合特征关注,提升对联合特征的敏感性,并有效地强调并聚焦空间和光谱信息,实现信息交互。最后经过Softmax分类器获得分类标签。本文提出的方法在MUUFL和Tento数据集上进行了实验,结果表明,本文算法的总体分类精度分别达到了94.08%和98.32%。相比于其他高光谱分类模型,本文模型的收敛速度较快,在分类性能上取得了明显的提升,获得了更高的地物分类精度。 展开更多
关键词 光谱 图像分类 注意力机制 空间-光谱特征
在线阅读 下载PDF
基于深度特征提取残差网络的高光谱图像分类
5
作者 赵雪松 付民 刘雪峰 《电子测量技术》 北大核心 2024年第18期120-129,共10页
深度学习由于其模块化设计和强大的特征提取能力,已成为高光谱图像分类的重要手段之一。然而,如何有效地提取更深层次的特征以及同时提高分析空间和光谱联合特征的能力仍是亟待解决的问题。针对这些问题,本文提出了一种深度特征提取的... 深度学习由于其模块化设计和强大的特征提取能力,已成为高光谱图像分类的重要手段之一。然而,如何有效地提取更深层次的特征以及同时提高分析空间和光谱联合特征的能力仍是亟待解决的问题。针对这些问题,本文提出了一种深度特征提取的残差网络,该网络由两个关键部分组成:多级传递融合残差网络和空间-光谱多分辨率融合注意力残差网络。多级传递融合残差网络可以有效促进特征信息之间的相互作用,获得更深层次的特征。接着利用空间-光谱多分辨率融合注意力残差网络可以确保从高光谱数据中全面提取空间-光谱联合特征和多分辨率特征。为了验证其有效性,本文在Indian Pines,Pavia University和Salinas Valley三个高光谱数据集上对所提出方法的性能进行了评估,分类精度分别达到了98.10%,99.81%和99.94%。实验结果表明,与其他方法相比,该网络具有更好的泛化能力和分类性能。 展开更多
关键词 光谱图像分类 残差网络 空间-光谱联合特征 多分辨率
在线阅读 下载PDF
基于光谱-空间注意力残差网络的高光谱图像分类 被引量:2
6
作者 汪菲菲 赵慧洁 +2 位作者 李娜 李思远 蔡昱 《光子学报》 EI CAS CSCD 北大核心 2023年第12期200-218,共19页
在高光谱图像分类任务中,引入注意力改变提取到的光谱和空间特征权重,有效突出重要特征,提高分类准确率。将注意力机制、残差网络和特征提取模块集成到分类框架中,引入中心区域光谱注意力机制,在避免干扰像素对波段权重影响的同时,利用... 在高光谱图像分类任务中,引入注意力改变提取到的光谱和空间特征权重,有效突出重要特征,提高分类准确率。将注意力机制、残差网络和特征提取模块集成到分类框架中,引入中心区域光谱注意力机制,在避免干扰像素对波段权重影响的同时,利用周围像素增强中心像素波段,增强光谱特征的鲁棒性进而提取有效的光谱特征。并在此基础上提出了光谱-空间注意力残差网络,该网络可以从高光谱图像中连续提取到丰富的光谱特征和空间特征,并通过残差网络连接特征提取模块,缓解了精度下降问题,保证网络良好的分类性能。在4个公开数据集上,所提出的分类算法和其他算法相比,各项指标均达到最优。 展开更多
关键词 光谱-空间特征 残差网络 光谱分类 光谱注意力机制 空间注意力机制
在线阅读 下载PDF
基于多核Boosting特征组合的高光谱影像分类
7
作者 张梦顺 郭连坤 《信息技术与信息化》 2022年第3期130-133,共4页
针对高光谱数据多特征组合问题,提出了一种在多核学习框架下利用多核Boosting实现特征组合最优和异质互补的高光谱影像分类算法。此算法充分利用了高光谱遥感数据的光谱特征和空间特征,在大量的影像属性和分类器中实现最优分类,以充分... 针对高光谱数据多特征组合问题,提出了一种在多核学习框架下利用多核Boosting实现特征组合最优和异质互补的高光谱影像分类算法。此算法充分利用了高光谱遥感数据的光谱特征和空间特征,在大量的影像属性和分类器中实现最优分类,以充分利用遥感数据的互补信息。多核Boosting算法是对常用的多特征组合方法的拓展,与传统的多核学习方法不同,该方法是在多核学习的基础上将高光谱图像的光谱域和空间域信息投影到不同核空间中形成核矩阵,然后将核矩阵转化成弱支持向量机分类器组,最后利用Boosting算法对不同给定特征的弱分类器进行学习得到不同权重的强分类器,从而将特征与分类器结合。最终分类精度可以提高5%~6%,实现多特征优势组合。 展开更多
关键词 光谱影像分类 多核Boosting学习 空间-光谱特征组合 弱分类器
在线阅读 下载PDF
高光谱图像去噪的稀疏空谱Transformer模型 被引量:1
8
作者 杨智翔 孙玉宝 +1 位作者 白志远 栾鸿康 《电子测量技术》 北大核心 2024年第1期150-158,共9页
现阶段Transformer模型的应用提升了高光谱图像去噪的性能,但原始Transformer模型对图像空间-光谱耦合关联性的利用仍存在不足;对空间特征的处理存在过于平滑,容易丢失小尺度结构的现象;同时在光谱维度上也过于关注全部通道特征,缺乏对... 现阶段Transformer模型的应用提升了高光谱图像去噪的性能,但原始Transformer模型对图像空间-光谱耦合关联性的利用仍存在不足;对空间特征的处理存在过于平滑,容易丢失小尺度结构的现象;同时在光谱维度上也过于关注全部通道特征,缺乏对不同光谱波段间差异性的利用;为了应对这些问题,本文提出了一种新的稀疏空谱Transformer模型,提升了对空谱耦合关联性的利用。在空间维度,引入局部增强模块增强空间特征细节,应对过平滑问题;同时在光谱维度上提出了Top-k稀疏自注意力机制,自适应选择前K个最相关的光谱通道特征进行特征交互,从而能够有效捕获空谱特征。最终通过稀疏空谱Transformer的层级残差连接实现高光谱图像的去噪。在ICVL数据集上分别对高斯噪声和复杂噪声进行去噪处理,峰值信噪比分别达到40.56 dB和40.19 dB,证明了本文提出的稀疏空谱Transformer模型优越的性能。 展开更多
关键词 光谱图像去噪 空间-光谱联合特征 稀疏Transformer
在线阅读 下载PDF
混合卷积神经网络的高光谱图像分类方法 被引量:7
9
作者 刘翠连 陶于祥 +1 位作者 罗小波 李青妍 《激光技术》 CAS CSCD 北大核心 2022年第3期355-361,共7页
为了解决高光谱图像领域中,传统卷积神经网络因部分特征信息损失而影响最终地物分类精度的问题,采用一种基于2维和3维的混合卷积神经网络的高光谱图像分类方法,从空间增强、光谱-空间两方面分别进行了特征提取。首先从空间增强角度提出... 为了解决高光谱图像领域中,传统卷积神经网络因部分特征信息损失而影响最终地物分类精度的问题,采用一种基于2维和3维的混合卷积神经网络的高光谱图像分类方法,从空间增强、光谱-空间两方面分别进行了特征提取。首先从空间增强角度提出一种3维-2维卷积神经网络混合结构,得到增强后的空间信息;其次从光谱-空间角度利用3维卷积网络结构,得到光谱-空间的综合可分性信息;最后将所得信息进行特征融合并分类。用该方法在两个数据集上进行了实验并与其它方法进行了对比。结果表明,该方法在Indian Pines与Pavia University数据集上分别取得了99.36%和99.95%的分类精度,其分类精度和kappa系数都优于其它方法。该方法对高光谱图像的分类表现出竞争优势。 展开更多
关键词 遥感 光谱图像分类 混合卷积神经网络 光谱-空间特征 特征提取
在线阅读 下载PDF
基于轻量级光谱-空间注意力交互网络的高光谱地物分类研究 被引量:1
10
作者 周予 程二丽 +1 位作者 张娅莉 刘宇红 《光电子.激光》 CAS CSCD 北大核心 2023年第4期397-404,共8页
通过引入基于卷积神经网络(convolutional neural network, CNN)的分类算法,高光谱图像(hyperspectral image, HSI)分类任务的精度取得显著的提升,但目前主流CNN算法往往较为复杂且参数量大,从而导致网络难以训练以及容易产生过拟合问... 通过引入基于卷积神经网络(convolutional neural network, CNN)的分类算法,高光谱图像(hyperspectral image, HSI)分类任务的精度取得显著的提升,但目前主流CNN算法往往较为复杂且参数量大,从而导致网络难以训练以及容易产生过拟合问题。为在保证网络分类性能的前提下实现轻量化,本文提出一个轻量级架构的基于光谱-空间注意力交互机制的CNN网络用于HSI分类。为实现HSI的光谱-空间特征提取,构建了一个轻量化的双路径骨干网络用于两种特征的提取和融合。其次,为提高特征的表征能力,设计了两个注意力模块分别用于光谱和空间特征的权重再调整。同时,为加强双路径特征之间的关联以实现特征的更好融合,注意力交互机制被引入到网络中以进一步提升网络性能。在3个真实HSI数据集上的分类结果表明,本文所提网络可达到99.5%的分类准确度,并相比于其他网络至少减少50%的参数量。 展开更多
关键词 HSI地物分类 轻量化CNN架构 注意力交互机制 光谱-空间特征提取
原文传递
Hyperspectral image classification based on spatial and spectral features and sparse representation 被引量:4
11
作者 杨京辉 王立国 钱晋希 《Applied Geophysics》 SCIE CSCD 2014年第4期489-499,511,共12页
To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is ba... To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is based on the Gabor spatial texture features and nonparametric weighted spectral features, and the sparse representation classification method(Gabor–NWSF and SRC), abbreviated GNWSF–SRC. The proposed(GNWSF–SRC) method first combines the Gabor spatial features and nonparametric weighted spectral features to describe the hyperspectral image, and then applies the sparse representation method. Finally, the classification is obtained by analyzing the reconstruction error. We use the proposed method to process two typical hyperspectral data sets with different percentages of training samples. Theoretical analysis and simulation demonstrate that the proposed method improves the classification accuracy and Kappa coefficient compared with traditional classification methods and achieves better classification performance. 展开更多
关键词 HYPERSPECTRAL CLASSIFICATION sparse representation spatial features spectral features
在线阅读 下载PDF
Local information enhanced LBP
12
作者 张刚 苏光大 +1 位作者 陈健生 王晶 《Journal of Central South University》 SCIE EI CAS 2013年第11期3150-3155,共6页
Based on the observation that there exists multiple information in a pixel neighbor,such as distance sum and gray difference sum,local information enhanced LBP(local binary pattern)approach,i.e.LE-LBP,is presented.Geo... Based on the observation that there exists multiple information in a pixel neighbor,such as distance sum and gray difference sum,local information enhanced LBP(local binary pattern)approach,i.e.LE-LBP,is presented.Geometric information of the pixel neighborhood is used to compute minimum distance sum.Gray variation information is used to compute gray difference sum.Then,both the minimum distance sum and the gray difference sum are used to build a feature space.Feature spectrum of the image is computed on the feature space.Histogram computed from the feature spectrum is used to characterize the image.Compared with LBP,rotation invariant LBP,uniform LBP and LBP with local contrast,it is found that the feature spectrum image from LE-LBP contains more details,however,the feature vector is more discriminative.The retrieval precision of the system using LE-LBP is91.8%when recall is 10%for bus images. 展开更多
关键词 texture feature extraction LE-LBP minimum distance sum gray difference sum
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部