期刊文献+
共找到100篇文章
< 1 2 5 >
每页显示 20 50 100
竞争性自适应重加权算法和相关系数法提取特征波长检测番茄叶片真菌病害 被引量:33
1
作者 王海龙 杨国国 +2 位作者 张瑜 鲍一丹 何勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2017年第7期2115-2119,共5页
基于竞争性自适应重加权算法(CARS)和相关系数法(CA)特征波长选择方法,提出了利用可见-近红外高光谱成像技术检测番茄叶片灰霉病的方法。首先获取380~1 023nm波段范围内80个染病和80个健康番茄叶片的高光谱图像,然后提取染病和健康叶片... 基于竞争性自适应重加权算法(CARS)和相关系数法(CA)特征波长选择方法,提出了利用可见-近红外高光谱成像技术检测番茄叶片灰霉病的方法。首先获取380~1 023nm波段范围内80个染病和80个健康番茄叶片的高光谱图像,然后提取染病和健康叶片感兴趣区域(ROI)的光谱反射率值,作为番茄叶片灰霉病鉴别模型的输入来建立支持向量机(SVM)鉴别模型,训练集和验证集的鉴别率都是100%。研究进一步通过CARS和CA提取特征波长,分别得到5个(554,694,696,738和880nm)和4个(527,555,571和633nm)特征波长,然后分别建立CARS-SVM和CA-SVM鉴别模型。结果显示,CARS-SVM模型中训练集和验证集的鉴别率都是100%,CA-SVM模型中训练集和验证集的鉴别率分别是91.59%和92.45%。以上结果说明了从可见-近红外高光谱图像中提取的光谱反射率值用于检测番茄叶片的灰霉病是可行的。 展开更多
关键词 高光谱成像技术 竞争性自适应加权算法 相关系数法 支持向量机 番茄 灰霉病
在线阅读 下载PDF
中红外光谱技术结合竞争性自适应重加权算法快速分析白酒风味组分 被引量:5
2
作者 宋艳 杨洋 +4 位作者 张学平 许驰 王毓 蔡亮 李子文 《中国酿造》 CAS 北大核心 2022年第12期230-234,共5页
采用中红外光谱分析技术结合竞争性自适应重加权算法(CARS)对浓香型白酒基酒中的乳酸乙酯和乙酸乙酯的特征波长变量进行筛选后,建立偏最小二乘法(PLS)模型,并对其进行验证。结果表明,采用中红外光谱分析技术剔除明显噪声区域建立的PLS... 采用中红外光谱分析技术结合竞争性自适应重加权算法(CARS)对浓香型白酒基酒中的乳酸乙酯和乙酸乙酯的特征波长变量进行筛选后,建立偏最小二乘法(PLS)模型,并对其进行验证。结果表明,采用中红外光谱分析技术剔除明显噪声区域建立的PLS模型效果较好,而经CARS法进行特征波长选择后建立的CARS-PLS模型效果优于PLS模型,乙酸乙酯和乳酸乙酯的CARS-PLS模型相关系数R^(2)分别为0.995、0.989,预测均方根误差(RMSEP)分别为12.80、4.54,相对分析误差(RPD)分别为8.78及8.60,模型经独立验证均取得了较高的预测精度,验证数据相关系数R^(2)分别为0.994及0.992,RMSEP分别为13.55及4.86。该模型有较高的准确度及稳定性,能够用于白酒基酒中的乳酸乙酯和乙酸乙酯的快速分析,可为白酒酿造过程的质量把控提供技术方法。 展开更多
关键词 竞争性自适应加权变量算法 白酒基酒 中红外光谱分析技术 波长变量选择 定量分析
在线阅读 下载PDF
窗口竞争性自适应重加权采样策略的近红外特征变量选择方法 被引量:12
3
作者 李跑 周骏 +2 位作者 蒋立文 刘霞 杜国荣 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第5期1428-1432,共5页
通过消除光谱中的冗余信息变量,挑选出代表样品性质的特征变量代替全谱建立定量模型,可以提高近红外分析结果的准确性。基于进化论中适者生存原理的竞争性自适应重加权采样(CARS)算法因具有计算速度快、筛选得到的特征波长少等优点,在... 通过消除光谱中的冗余信息变量,挑选出代表样品性质的特征变量代替全谱建立定量模型,可以提高近红外分析结果的准确性。基于进化论中适者生存原理的竞争性自适应重加权采样(CARS)算法因具有计算速度快、筛选得到的特征波长少等优点,在近红外特征变量筛选方面得到了广泛的应用。然而该方法在计算过程中容易出现校正集和验证集结果不一致情况。这是因为算法过于强调校正集交叉验证结果,且并未考虑相邻变量之间的协同作用。为了建立更加稳健的变量筛选方法,通过结合"窗口"以及CARS算法的优势,提出了一种基于窗口竞争性自适应重加权采样(WCARS)策略的近红外特征变量筛选方法,并将其应用于复杂植物样品近红外光谱与其化学成分含量之间的建模分析。采用WCARS方法可以实现准确定量分析,且通过与竞争性自适应重加权采样(CARS)方法结果相比较, WCARS方法得到的校正集和预测集结果一致,在一定程度上减少了过拟合问题的出现。该策略能有效增强特征变量选择的稳健性,提高了定量模型的可信度,具有一定的应用价值。 展开更多
关键词 近红外光谱仪 化学计量学 窗口竞争性自适应加权采样
在线阅读 下载PDF
面向XRF的竞争性自适应重加权算法和粒子群优化的支持向量机定量分析研究 被引量:7
4
作者 程惠珠 杨婉琪 +2 位作者 李福生 马骞 赵彦春 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第12期3742-3746,共5页
研究高效、准确、便捷的土壤重金属检测方法对于了解土壤的污染状况以及开展污染防治工作具有重要的意义。由于X射线荧光光谱分析(XRF)技术具备快速、准确、无损检测、样品制备简单等优势,在土壤重元素定量检测获得广泛应用。XRF仪器测... 研究高效、准确、便捷的土壤重金属检测方法对于了解土壤的污染状况以及开展污染防治工作具有重要的意义。由于X射线荧光光谱分析(XRF)技术具备快速、准确、无损检测、样品制备简单等优势,在土壤重元素定量检测获得广泛应用。XRF仪器测试标准样品的荧光光谱并建立校准曲线,通过反演计算得到待测样品的元素含量。由于样品元素间存在基体效应,以及荧光谱特征峰存在叠加干扰,未经优化的校准曲线的线性度较差,这给反演计算来困难。为了解决上述问题,分别利用小波变换、非对称加权惩罚最小二乘法(arPLS)对光谱进行去噪和扣除本底基线,提高校准曲线的决定系数(R2);运用竞争性自适应重加权算法(CARS),针对不同目标元素优化变量选取;进一步地,基于选取的变量建立粒子群算法(PSO)优化的支持向量机回归(SVR)模型,并通过该模型反演计算各元素含量,提高定量分析的准确度和预测的泛化能力。实验结果显示,经过小波去噪和arPLS本底扣除后的校准曲线的决定系数(R2)有明显提升,Cr、Cu、Zn、As、Pb分别从0.965、0.979、0.971、0.794、0.915提高为0.979、0.987、0.981、0.828、0.953;通过CARS选取的谱线变量的个数大幅度减少,从2 048个通道降低到30个以下,为原来变量个数的1.5%,提高了变量选择的精准性;与偏最小二乘法(PLS)、未优化的SVR模型进行对比,采用CARS变量选择和PSO优化的SVR模型进行含量预测,训练集RC2与测试集RP2的决定系数分别在0.99、0.90以上,预测准确性有明显提高。因此,所提出的竞争性自适应重加权算法和PSO优化的SVR定量分析模型对于土壤重金属元素定量分析具有较好的理论指导和应用价值。 展开更多
关键词 X射线荧光光谱 土壤金属 竞争性自适应加权算法 粒子群算法 支持向量机回归模型
在线阅读 下载PDF
近红外光谱结合竞争性自适应重加权采样算法用于人工牛黄的质量分析研究 被引量:11
5
作者 石岩 孙冬梅 +2 位作者 熊婧 魏锋 马双成 《中国药学杂志》 CAS CSCD 北大核心 2018年第14期1216-1221,共6页
目的对人工牛黄近红外光谱的特征波长进行分析和研究。方法使用竞争性自适应重加权采样算法(CARS),分别从定性和各定量指标的角度,优化筛选出近红外光谱的特征波长变量。结果筛选出的特征波长数目仅为全变量的0.48%~4.44%,所构建的模型... 目的对人工牛黄近红外光谱的特征波长进行分析和研究。方法使用竞争性自适应重加权采样算法(CARS),分别从定性和各定量指标的角度,优化筛选出近红外光谱的特征波长变量。结果筛选出的特征波长数目仅为全变量的0.48%~4.44%,所构建的模型相比于近红外光谱全波长构建的模型来说,不仅变量数量大幅度减少,而且评价模型的指标参数更佳。结论该方法适用于人工牛黄的质量评价与控制。 展开更多
关键词 人工牛黄 近红外光谱 竞争性自适应加权采样算法 胆汁酸 偏最小二乘回归
原文传递
激光诱导击穿光谱结合竞争自适应重加权采样算法对猪饲料中铜元素的定量分析 被引量:8
6
作者 刘珊珊 张俊 +3 位作者 林思寒 刘木华 黎静 潘作栋 《激光与光电子学进展》 CSCD 北大核心 2018年第2期457-463,共7页
饲料中添加铜元素对猪生长速度的促进效果明显,因而铜元素在猪饲料中的超标情况非常普遍,但其带来的危害也非常严重。利用共线双脉冲激光诱导击穿光谱(DP-LIBS)技术对猪饲料中的铜元素进行快速定量分析,采用竞争自适应重加权采样(CARS)... 饲料中添加铜元素对猪生长速度的促进效果明显,因而铜元素在猪饲料中的超标情况非常普遍,但其带来的危害也非常严重。利用共线双脉冲激光诱导击穿光谱(DP-LIBS)技术对猪饲料中的铜元素进行快速定量分析,采用竞争自适应重加权采样(CARS)算法筛选出与猪饲料中铜元素相关的22个重要变量,压缩率为1.1%;基于筛选出来的22个重要波长变量,利用偏最小二乘(PLS)回归方法建立猪饲料中铜元素含量的预测模型,并对预测集猪饲料样品中的铜元素含量进行预测。结果表明:与全光谱-PLS模型相比,CARS-PLS模型具有更高的预测精度和预测能力,模型相关系数、交叉验证均方根误差、平均相对误差分别为0.978、19.25、5.59%。CARS算法可以有效地优化猪饲料中铜元素的激光诱导击穿光谱在线检测模型,并可以提高模型的预测精度。 展开更多
关键词 光谱学 激光诱导击穿光谱 猪饲料 竞争自适应加权采样算法
原文传递
基于竞争适应重加权采样算法耦合机器学习的土壤含水量估算 被引量:30
7
作者 葛翔宇 丁建丽 +3 位作者 王敬哲 王飞 蔡亮红 孙慧兰 《光学学报》 EI CAS CSCD 北大核心 2018年第10期385-392,共8页
土壤含水量是干旱区地表水-热-溶质耦合运移的关键指标;以干旱区典型样点实测土壤含水量及其室内可见光-近红外光谱数据作为数据集,通过蒙特卡罗交叉验证确定77个有效样本;基于竞争适应重加权采样算法筛选出最优光谱变量子集,利用3种机... 土壤含水量是干旱区地表水-热-溶质耦合运移的关键指标;以干旱区典型样点实测土壤含水量及其室内可见光-近红外光谱数据作为数据集,通过蒙特卡罗交叉验证确定77个有效样本;基于竞争适应重加权采样算法筛选出最优光谱变量子集,利用3种机器学习方法——BP神经网络、随机森林回归和极限学习机建立土壤含水量预测模型,进而实现土壤含水量估算模型的优选。结果表明:竞争适应重加权采样算法能有效剔除无关变量,从2151个光谱波段中优选出20个特征波段,其中R1848与土壤含水量的最大相关系数为0.531;引入偏最小二乘模型和机器学习方法进行对比,分析发现机器学习方法的预测结果比偏最小二乘模型更高;分析比较BP神经网络、随机森林回归和极限学习机的建模结果可知:极限学习机模型建模在机器学习方法中的效果最佳,决定系数R2=0.918,均方根误差RMSE=0.015,相对分析误差RPD=3.123,四分位数间隔RPIQ=3.325;机器学习能显著提升光谱建模反演土壤含水量的精度和稳定性,显示出其在非线性问题中具有很强的透析力和较好的模型稳健性,针对干旱区土壤水分的精准预测和定量估算具有可行性,可为干旱区土壤墒情、精准农业等研究提供科学参考。 展开更多
关键词 光谱学 土壤含水量估算 机器学习 竞争适应加权采样算法 极限学习机 随机森林
原文传递
优化CARS结合PSO-SVM算法农田土壤重金属砷含量高光谱反演分析 被引量:29
8
作者 袁自然 魏立飞 +2 位作者 张杨熙 余铭 闫芯茹 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2020年第2期567-573,共7页
土壤重金属污染是由于人类活动导致重金属物质大量残留在土壤中,超过土壤环境承载力,这种现象将造成土壤质量退化、生态环境恶化。高光谱遥感可以实现图谱合一,能有效地识别出土壤中不同元素的异常情况。为实现农田土壤重金属高效、准... 土壤重金属污染是由于人类活动导致重金属物质大量残留在土壤中,超过土壤环境承载力,这种现象将造成土壤质量退化、生态环境恶化。高光谱遥感可以实现图谱合一,能有效地识别出土壤中不同元素的异常情况。为实现农田土壤重金属高效、准确监测,提出了一种特征提高型竞争性自适应重加权算法(CARS)选取特征波段的粒子群算法(PSO)优化支持向量机(SVM)农田土壤重金属砷(As)含量高光谱估测分析方法。利用CARS对暗室实测光谱值进行粗选;利用一阶导数(FD)、高斯滤波(GF)、归一化(N)进行特征提高;在特征精选阶段利用皮尔逊相关系数(PCC)求取预处理后的光谱指标与土壤重金属As之间的相关系数,获取相关性大于0.6的波段作为特征波段;最后利用PSO对SVM所选择的核函数σ和正则化参数γ进行优化,以均方根误差(RMSE)作为适应度函数,通过迭代最优适应度得到SVM最优参数值。选择江汉平原典型区域洪湖市燕窝镇的土壤为研究对象,预测结果表明基于PSO-SVM算法其验证集的决定系数R 2为0.9823,均方根误差RMSE为0.5216,平均绝对误差MAE为0.4164。主要结论如下:PSO算法优化SVM参数,通过迭代更新个体极值和群体极值,可以迅速获取全局最优解,与支持向量机回归(SVMR)和随机森林回归(RFR)相比,在预测精度有了较大的提高;特征提高型CARS算法可以有效剔除无关信息,提高相关性,且选取波段少,模型简单,大大提高了效率;可以实现土壤污染预警、满足精准农业需求、为后期重金属污染土地生态修复提供数据基础。 展开更多
关键词 高光谱遥感 土壤金属 粒子群算法 特征波段 竞争性自适应加权算法
在线阅读 下载PDF
鲸鱼算法改进极限学习机的葡萄酒品质评价研究 被引量:1
9
作者 窦力 郑崴 +1 位作者 李柏秋 李斐 《食品与机械》 CSCD 北大核心 2024年第6期62-68,共7页
[目的]解决近红外光谱中冗余信息过多的问题,提升葡萄酒品质评价模型的准确性,并构建一种快速无损的葡萄酒品质评价方法。[方法]运用竞争性自适应重加权采样法进行特征波长筛选,提出了鲸鱼算法改进极限学习机的葡萄酒品质评价模型。通... [目的]解决近红外光谱中冗余信息过多的问题,提升葡萄酒品质评价模型的准确性,并构建一种快速无损的葡萄酒品质评价方法。[方法]运用竞争性自适应重加权采样法进行特征波长筛选,提出了鲸鱼算法改进极限学习机的葡萄酒品质评价模型。通过自适应重加权采样法等多种特征波长筛选方法,确定了最适用于葡萄酒光谱特征波长筛选的方法;针对ELM的初值权值与隐含层偏置选取问题,利用鲸鱼优化方法对初值权值与隐含层偏置进行优化,从而构建了一种基于鲸鱼优化算法改进的极限学习机葡萄酒品质评价模型。[结果]与GA-ELM、PSO-ELM和传统的ELM模型相比,WOA-ELM的准确率最高,达到了0.9445,GA-ELM的准确率为0.9290,PSO-ELM的准确率为0.9061,传统的ELM方法准确率为0.8177。[结论]通过智能算法优化ELM模型的参数,可以有效提高葡萄酒品质评价的准确性。 展开更多
关键词 近红外光谱 极限学习机 鲸鱼优化算法 特征波长 竞争性自适应加权采样
在线阅读 下载PDF
基于CARS和1D-CNN联合的XRF土壤重金属超标分析方法研究 被引量:1
10
作者 杨婉琪 李智琪 +2 位作者 李福生 吕树彬 樊佳婧 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期670-674,共5页
随着社会现代化进程的迈进,愈加频繁的人类活动加剧了土壤重金属污染。当土壤中重金属元素含量超过风险筛选值时,会经过食物链摄入人体,过量的重金属累积对人体健康造成损害。筛选出具有重金属污染风险的土壤是治理土壤污染的重要环节... 随着社会现代化进程的迈进,愈加频繁的人类活动加剧了土壤重金属污染。当土壤中重金属元素含量超过风险筛选值时,会经过食物链摄入人体,过量的重金属累积对人体健康造成损害。筛选出具有重金属污染风险的土壤是治理土壤污染的重要环节。采用X射线荧光(XRF)光谱仪获取了59份国家标准土壤样品的光谱数据,然后对其进行小波阈值去噪和迭代离散小波变换本底扣除等预处理;运用基于竞争性自适应重加权采样(CARS)算法对土壤中的重金属元素进行谱线筛选;将筛选后的结果作为模型的输入,通过建立1D-CNN模型预测土壤样本是否具有重金属污染的风险。实验结果显示,通过CARS算法采样后的特征通道数大幅度减少,Ni、Cu、As、Pb元素从原来的2048个特征点分别减少为37、53、37、45个,为原来通道数的1.81%~2.59%。相较于不筛选和连续投影(SPA)筛选方法,结合CARS算法的1D-CNN模型在判断土壤样品是否有Ni、Cu、As、Pb元素污染风险时的准确率分别可以达到96.67%,93.22%,91.67%,88.33%。经CARS筛选,1D-CNN比偏最小二乘回归(PLSR)方法在预测准确性方面有明显优势。提出的CARS-1D-CNN算法在提高模型预测准确率的同时减少了模型的计算量,对于XRF光谱土壤重金属元素污染风险筛选具有较好的理论指导和应用价值。 展开更多
关键词 X射线荧光光谱 金属 竞争性自适应加权采样 一维卷积神经网络
在线阅读 下载PDF
联合FOD-sCARS的土壤有机质高光谱机器学习估测模型
11
作者 吴梦红 窦森 +5 位作者 林楠 姜然哲 陈思 李佳璇 付佳伟 梅显军 《光谱学与光谱分析》 SCIE EI CAS 北大核心 2025年第1期204-212,共9页
土壤有机质(SOM)含量是表征土壤质量的关键指标,在全球碳循环系统中发挥重大作用。快速准确的SOM估算和空间制图对土壤碳库估算、作物生长监测和耕地规划管理具有重要意义。利用传统方法监测区域性SOM含量耗时费力,基于高光谱遥感影像建... 土壤有机质(SOM)含量是表征土壤质量的关键指标,在全球碳循环系统中发挥重大作用。快速准确的SOM估算和空间制图对土壤碳库估算、作物生长监测和耕地规划管理具有重要意义。利用传统方法监测区域性SOM含量耗时费力,基于高光谱遥感影像建立SOM估测模型是现在较为合理有效的方法。为探索解决目前高光谱遥感影像建立SOM含量估测模型存在光谱数据冗余、光谱数据特征提取精度低、小样本模型泛化能力不强的问题,选择位于青海省湟中县的研究区,共采集67个土壤样本。获取资源1号02D(ZY1-02D)高光谱遥感影像并进行预处理得到样点像元光谱数据,采用分数阶微分变换(FOD)方法挖掘与SOM含量具有响应关系的敏感波段,以0.2为一个步长,利用相关性阈值法对比分析不同阶次微分处理数据挖掘能力;运用稳定性竞争性自适应重加权采样算法(sCARS)去除高光谱冗余数据获取建模特征波段,选择随机森林(RF)、极端梯度提升树、极限学习机和岭回归机器学习作为建模算法,以全波段和特征波段光谱数据分别作为模型输入变量构建SOM估测模型进行高光谱反演研究工作;最后根据最优特征变量和建模算法,基于ZY1-02D遥感影像进行了SOM空间分布制图。结果表明:采用FOD变换相比整数阶可以大大提高波段与SOM含量间的相关性,挖掘出更多细微的与SOM含量产生响应关系的光谱波段,其中0.8阶微分变换效果最优,较原始波段相比相关系数最大值提高了0.546;相较于全波段光谱数据,采用sCARS特征提取方法获取特征波段构建模型的估测精度得到较大提升,说明sCARS可以有效提升建模数据的质量,提升模型预测精度。建模算法中RF表现最优,R_(p)^(2)(模型决定系数)达到0.766,RPD达到1.86,较全波段建模结果R_(p)^(2)提升约7.58%;基于FOD-sCARS和RF实现了区域SOM含量估测制图。研究进一步验证利用星载高光谱遥感影像是实现区域SOM估测制图的可靠途径,研究结果可为估测区域SOM含量提供新思路,为利用星载高光谱遥感影像绘制SOM含量空间分布图提供了数据支持。 展开更多
关键词 高光谱遥感影像 分数阶微分变换 稳定性竞争性自适应重加权采样算法 土壤有机质 随机森林
在线阅读 下载PDF
高光谱技术结合CARS算法预测土壤水分含量 被引量:38
12
作者 于雷 朱亚星 +3 位作者 洪永胜 夏天 刘目兴 周勇 《农业工程学报》 EI CAS CSCD 北大核心 2016年第22期138-145,共8页
高光谱技术已成为预测土壤含水量(soil moisture content,SMC)的重要方法,但因土壤高光谱中包含了大量冗余信息和无效信息,不仅导致SMC的高光谱估算模型复杂度高,而且影响了模型的预测精度。因此,该研究在室内设计SMC梯度试验,测定土... 高光谱技术已成为预测土壤含水量(soil moisture content,SMC)的重要方法,但因土壤高光谱中包含了大量冗余信息和无效信息,不仅导致SMC的高光谱估算模型复杂度高,而且影响了模型的预测精度。因此,该研究在室内设计SMC梯度试验,测定土壤高光谱反射率,经Savitzky-Golay平滑(Savitzky-Golay smoothing,SG)和连续统去除(continuum removal,CR)预处理后,基于竞争适应重加权采样(competitive adaptive reweighted sampling,CARS)方法分别优选出土壤在全部SMC的水分敏感波长变量,确定适用于土壤在全部SMC的共性波长变量,以其为优选变量集,采用偏最小二乘(partial least squares regression,PLSR)回归方法建立模型并进行验证。结果表明,SG和CR预处理后的光谱曲线在450、1 400、1 900、2 200 nm附近吸收峰的形状特征凸显;基于CARS方法对土壤在不同SMC的光谱曲线进行变量优选后,得出优选变量集为443~449、1 408~1 456、1 916~1 943、2 209~2 225 nm;CARS-PLSR模型性能优于全波段PLSR模型,模型预测R2、均方根误差、相对分析误差分别为0.983、0.0144、8.36,不仅提升了预测精度和预测能力,而且降低了变量维度和模型复杂度。该文通过优选土壤水分的敏感波段,有效提高了SMC预测模型的鲁棒性,为快速准确评估农田墒情提供了新途径,为开发田间SMC测定传感器提供了理论依据。 展开更多
关键词 土壤水分 算法 模型 高光谱 竞争适应加权采样算法 变量优选 潮土
在线阅读 下载PDF
近红外高光谱图像结合CARS算法对鸭梨SSC含量定量测定 被引量:39
13
作者 李江波 彭彦昆 +1 位作者 陈立平 黄文倩 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第5期1264-1269,共6页
高光谱数据量大、维数高且原始光谱噪声明显、散射严重等特征导致光谱建模时关键波长变量提取困难。基于此,提出采用竞争性自适应重加权算法(CARS)对近红外高光谱数据进行关键变量选择。鸭梨作为研究对象。采用决定系数r2、预测均方根误... 高光谱数据量大、维数高且原始光谱噪声明显、散射严重等特征导致光谱建模时关键波长变量提取困难。基于此,提出采用竞争性自适应重加权算法(CARS)对近红外高光谱数据进行关键变量选择。鸭梨作为研究对象。采用决定系数r2、预测均方根误差RMSEP和验证集标准偏差和预测集标准偏差的比值RPD值进行模型性能评估。基于选择的关键变量建立PLS模型(CARS-PLS)与全光谱变量建立的PLS模型进行比较发现CARS-PLS模型仅仅使用原始变量中15.6%的信息获得了比全变量PLS模型更好的鸭梨SSC含量预测结果,r2pre,RMSEP和RPD分别为0.908 2,0.312 0和3.300 5。进一步与基于蒙特卡罗无信息变量MC-UVE和遗传算法(GA)获得的特征变量建立的PLS模型比较发现,CARS不仅可以去除原始光谱数据中的无信息变量,同时也能够对共线性的变量进行压缩去除,该方法能够有效地用于高光谱数据变量的选择。结果表明,近红外高光谱技术结合CARS-PLS模型能够用于鸭梨可溶性固形物SSC含量的定量预测。从而为基于近红外高光谱技术预测水果内部品质的研究提供了参考。 展开更多
关键词 近红外高光谱 可溶性固形物 鸭梨 变量选择 竞争性自适应加权算法
在线阅读 下载PDF
高光谱结合波长选择算法串联策略检测调理牛排新鲜度 被引量:5
14
作者 孙宗保 王天真 +5 位作者 刘小裕 邹小波 梁黎明 李君奎 牛增 高云龙 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2020年第10期3224-3229,共6页
生鲜调理牛排超过货架期时,其散发的腐败气味易被调料气味掩蔽,使消费者难以分辨。挥发性盐基氮(TVB-N)是表征肉品新鲜度的有效指标。由于测定TVB-N含量的化学方法繁琐耗时,利用高光谱对生鲜调理牛排中TVB-N含量进行预测,并讨论了不同... 生鲜调理牛排超过货架期时,其散发的腐败气味易被调料气味掩蔽,使消费者难以分辨。挥发性盐基氮(TVB-N)是表征肉品新鲜度的有效指标。由于测定TVB-N含量的化学方法繁琐耗时,利用高光谱对生鲜调理牛排中TVB-N含量进行预测,并讨论了不同波长选择算法所建模型的预测效果。分别在第0,2,4,6,8天取出制备好的生鲜调理牛排,进行高光谱数据采集和TVB-N含量测定。采用1^st Der,2^nd Der,MC,MSC,SG和SNVT六种光谱预处理方法对光谱数据进行预处理,并建立偏最小二乘模型(PLS)优选出最佳预处理方法。采用竞争性自适应重加权算法(CARS)、变量组合集群分析法(VCPA)、间隔随机蛙跳(iRF)、iRF-CARS、iRF-VCPA等方法对预处理后的光谱数据进行波长选择,建立特征波长下的预测模型。将CARS和VCPA重复运行50次考察其稳定性,并选择频次较高波长建模与单次运行比较。结果表明:在六种光谱预处理方法中,1 st Der为最佳预处理方法。CARS和VCPA单次运行时分别选择了21和11个波长,其中VCPA选择波长建模预测效果更好,模型的R C和R P分别为0.944和0.931,RMSECV和RMSEP分别为1.12和1.28 mg·(100 g)^-1。统计CARS和VCPA重复运行50次时各波长被选择频次,结果表明VCPA因其二进制矩阵采样法(BMS)为每个变量提供相同的采样机会而有更好的稳定性。同时发现两种方法有共同的高频次波长:694.9,696.6,761.8,763.5,811.5和813.3 nm等。将波长被选频次降序排列,选择与单次运行数量相同的较高频次的波长建模,所得模型性能较差。将iRF分别与CARS和VCPA联用,其中iRF-CARS表现出较强的预测能力,选择了24个波长建模,模型的R C和R P分别为0.966和0.938,RMSECV和RMSEP分别为0.91和1.22 mg·(100 g)^-1。这说明将波长区间选择和波长点选择联用可以实现它们的优势互补。高光谱技术结合波长选择方法可以很好地预测调理牛排中TVB-N含量,研究可为波长选择算法联用策略和调理牛排新鲜度快速检测提供理论参考。 展开更多
关键词 高光谱成像 生鲜调理牛排 挥发性盐基氮 竞争性自适应加权采样 变量组合集群分析
在线阅读 下载PDF
基于特征波段选择的芦苇LAI高光谱遥感估测
15
作者 刘玮佳 张晓彤 +3 位作者 杨睿 何建男 尹轩 刘明月 《华北理工大学学报(自然科学版)》 CAS 2025年第1期79-87,共9页
选取典型芦苇湿地基于芦苇叶片实测高光谱数据和叶面积指数(Leaf Area Index,LAI),在原始光谱的基础上进行了平滑(R)、一阶微分(FD)、倒数(RT)、对数(LT)、倒数一阶微分(RTFD)、对数一阶微分(LTFD)等六种光谱变换,利用竞争性自适应重加... 选取典型芦苇湿地基于芦苇叶片实测高光谱数据和叶面积指数(Leaf Area Index,LAI),在原始光谱的基础上进行了平滑(R)、一阶微分(FD)、倒数(RT)、对数(LT)、倒数一阶微分(RTFD)、对数一阶微分(LTFD)等六种光谱变换,利用竞争性自适应重加权算法(CARS)对不同变换下芦苇LAI特征光谱波段予以筛选,进而用筛选的特征波段采用逐波段组合法(BCI)构建芦苇LAI敏感光谱指数,利用随机森林(RF)、极端梯度提升(XGBoost)以及支持向量机(SVM)回归算法,构建芦苇LAI的高光谱估算模型。结果表明,采用CARS算法筛选不同变换光谱的特征波段构建模型,发现经过FD变换(R^(2)=0.417,RMSE=0.905)的模型效果最优。在CARS基础上使用筛选过后的特征波段构建植被指数进行建模比较,模型效果最好的是XGBoost(R^(2)=0.620,RMSE=0.826)。 展开更多
关键词 光谱变换 叶面积指数 逐波段组合 竞争性自适应加权算法
在线阅读 下载PDF
CARS-SPA算法结合高光谱检测马铃薯还原糖含量 被引量:15
16
作者 姜微 房俊龙 +1 位作者 王树文 王润涛 《东北农业大学学报》 CAS CSCD 北大核心 2016年第2期88-95,共8页
以竞争性重加权自适应选择算法(CARS)结合连续投影算法(SPA)选择马铃薯还原糖含量特征波长,共制备238个样本,比色法测定马铃薯还原糖含量,选择190个样本作校正集,48个样本作验证集,与全光谱和经典变量提取方法比较。结果表明,CARS-SPA... 以竞争性重加权自适应选择算法(CARS)结合连续投影算法(SPA)选择马铃薯还原糖含量特征波长,共制备238个样本,比色法测定马铃薯还原糖含量,选择190个样本作校正集,48个样本作验证集,与全光谱和经典变量提取方法比较。结果表明,CARS-SPA算法筛选波段效果最佳,相比于全谱建模其参与建模波长点由203个减少到17个,模型验证集决定系数r^2由0.8464提高到0.8965,均方根误差(RMSEP)由0.0758降到0.0490。结果表明,采用CARS-SPA结合高光谱成像技术检测马铃薯还原糖含量结果可行。 展开更多
关键词 高光谱 竞争性自适应加权采样算法 连续投影算法 马铃薯 还原糖
在线阅读 下载PDF
近红外光谱法定性描述酵母菌的生长过程 被引量:4
17
作者 王玮 江辉 +2 位作者 刘国海 梅从立 吉奕 《分析化学》 SCIE EI CAS CSCD 北大核心 2017年第8期1137-1142,共6页
提出了一种基于近红外光谱分析技术的酵母菌生长过程描述方法。利用AntarisⅡ型傅里叶变换近红外光谱仪获取酵母菌培养过程中,发酵物样本在10000~4000 cm^(-1)范围内的光谱数据,同时采用光电比浊法测定各样本的光密度(Optical density,... 提出了一种基于近红外光谱分析技术的酵母菌生长过程描述方法。利用AntarisⅡ型傅里叶变换近红外光谱仪获取酵母菌培养过程中,发酵物样本在10000~4000 cm^(-1)范围内的光谱数据,同时采用光电比浊法测定各样本的光密度(Optical density,OD)值;运用竞争性自适应重加权采样(Competitive adaptive reweighted sampling,CARS)算法优选特征光谱,再利用极限学习机(Extreme learning machine,ELM)建立酵母菌生长过程4个阶段的分类模型。研究结果显示,参与CARS-ELM模型建立的波长个数为30,其10次运行在训练集和测试集中的平均识别率分别为98.68%和97.37%。研究结果表明,利用近红外光谱分析技术结合适当的化学计量学方法描述酵母菌生长过程是可行的。 展开更多
关键词 酵母菌 近红外光谱 竞争性自适应加权采样 极限学习机
在线阅读 下载PDF
小波变换耦合CARS算法提高土壤水分含量高光谱反演精度 被引量:21
18
作者 蔡亮红 丁建丽 《农业工程学报》 EI CAS CSCD 北大核心 2017年第16期144-151,共8页
为实现干旱地区土壤水分含量(soil moisture content,SMC)的快速监测,该文以渭干河-库车河绿洲为靶区,采用小波变换(wavelet transform,WT)对反射光谱进行1~8层小波分解,通过相关性分析确定最大分解层数,再通过竞争性自适应重加权(compe... 为实现干旱地区土壤水分含量(soil moisture content,SMC)的快速监测,该文以渭干河-库车河绿洲为靶区,采用小波变换(wavelet transform,WT)对反射光谱进行1~8层小波分解,通过相关性分析确定最大分解层数,再通过竞争性自适应重加权(competitive adaptive reweighted sampling,CARS)滤除冗余变量,筛选出与SMC相关性较好的波长变量,并叠加各层特征光谱的优选波长变量作为最优变量集,用偏最小二乘回归(partial least squares regression,PLSR)构建土壤水分含量预测模型并进行分析。结果显示:1)小波分解过程中,土壤反射率与SMC的相关性不断增强,到小波变换第6层分解(L6)处达到最高,因此小波变换最大分解层数为6层分解;2)通过对土样进行WT-CARS耦合算法筛选出变量,得出的最优变量集包括400~500、1 320~1 461、1 851~1 961、2 125~2 268 nm区域之间共131个波长变量;3)相对于全波段预测模型,各层特征光谱的CARS优选变量预测模型的精度均高,并且基于最优变量集的预测模型的精度最高,该模型的建模集均方根误差0.021、建模集决定系数0.721、预测集均方根误差0.028、预测集决定系数0.924、相对分析误差2.607。说明WT-CARS耦合算法使其在建立模型时尽可能少地损失光谱细节、较为彻底的去除噪声,同时还能对无信息变量进行有效去除,为该研究区SMC的预测提供新的思路。 展开更多
关键词 土壤 含水率 光谱分析 小波变换 竞争适应加权采样算法 变量优选
在线阅读 下载PDF
基于高光谱和CARS-IRIV算法的‘库尔勒香梨’可溶性固形物含量检测 被引量:13
19
作者 梁琨 刘全祥 +1 位作者 潘磊庆 沈明霞 《南京农业大学学报》 CAS CSCD 北大核心 2018年第4期760-766,共7页
[目的]利用高光谱技术实现‘库尔勒香梨’可溶性固形物含量的有效无损检测具有重要意义,但是高光谱数据通常噪声明显,大量无关信息变量和冗余信息变量的存在降低了模型的预测精度。本文旨在探究对高光谱数据特征变量筛选的有效方法来实... [目的]利用高光谱技术实现‘库尔勒香梨’可溶性固形物含量的有效无损检测具有重要意义,但是高光谱数据通常噪声明显,大量无关信息变量和冗余信息变量的存在降低了模型的预测精度。本文旨在探究对高光谱数据特征变量筛选的有效方法来实现‘库尔勒香梨’可溶性固形物含量的快速检测。[方法]以‘库尔勒香梨’可溶性固形物含量(SSC)为研究指标,利用高光谱成像技术采集样本400~1 000 nm波长的漫反射光谱,对样本感兴趣区域(ROI)的光谱进行预处理,分别采用竞争性自适应重加权算法(CARS)、迭代保留信息变量算法(IRIV)以及CARS-IRIV算法筛选特征变量,基于不同筛选方法分别建立偏最小二乘(PLS)与最小二乘支持向量机(LS-SVM)预测模型,以预测集相关系数(Rp)、预测均方根误差(RMSEP)和预测相对分析误差(RPD)值对模型进行评价。[结果]CARS-IRIV算法可以有效减少CARS算法提取的变量个数,并稳定模型预测精度。LS-SVM模型预测结果优于PLS模型,在LS-SVM模型中CARS-IRIV-LS-SVM预测精度最高,Rp、RMSEP和RPD值分别为0.889、0.300和2.823。[结论]CARS-IRIV是一种有效的高光谱特征变量筛选算法,在提高预测精度的同时简化了模型的运算,CARS-IRIV-LS-SVM模型结合高光谱成像技术可以对‘库尔勒香梨’SSC进行快速有效的无损检测。 展开更多
关键词 高光谱成像技术 库尔勒香梨 可溶性固形物 竞争性自适应加权算法 迭代保留信息变量算法
在线阅读 下载PDF
基于AIRF-CARS波段选择算法的橡胶树叶片氮含量定量研究 被引量:2
20
作者 姜鸿 唐荣年 叶林蔚 《海南大学学报(自然科学版)》 CAS 2020年第2期166-170,共5页
以橡胶树叶片的近红外光谱信息为分析对象,运用由粗放到细致的多分辨率特征提取思想,提出了一种融合自适应间隔随机蛙与竞争自适应重加权采样(AIRF-CARS)的算法提取橡胶树叶片的光谱特征信息,从而实现了橡胶树叶片氮含量的定量分析.实... 以橡胶树叶片的近红外光谱信息为分析对象,运用由粗放到细致的多分辨率特征提取思想,提出了一种融合自适应间隔随机蛙与竞争自适应重加权采样(AIRF-CARS)的算法提取橡胶树叶片的光谱特征信息,从而实现了橡胶树叶片氮含量的定量分析.实验结果表明,AIRF-CARS算法有效的压缩了光谱特征的数量,通过算法选择的特征波长为22个,使得定量分析模型的预测均方根误差(RMSEP)和决定系数(R2)分别为0.1364%和0.9596.因此,本文算法可以有效地提取信息量较大的波长特征,应用于近红外光谱检测的定量分析中,并为便携式田间多波段光谱仪的研发提供理论支撑. 展开更多
关键词 氮含量 橡胶树叶 自适应间隔随机青蛙 竞争性自适应加权采样 波长选择
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部