The LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(Ni-rich NCM)cathode materials suffer from electrochemical performance degradation upon cycling due to detrimental cathode interface reactions and irreversible surface phase transiti...The LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(Ni-rich NCM)cathode materials suffer from electrochemical performance degradation upon cycling due to detrimental cathode interface reactions and irreversible surface phase transition when operating at a high voltage(≥4.5 V).Herein,a traditional carbonate electrolyte with lithium difluoro(oxalato)borate(Li DFOB)and tris(trimethylsilyl)phosphate(TMSP)as dual additives that can preferentially oxidize and decompose to form a stable F,B and Si-rich cathode-electrolyte interphase(CEI)that effectively inhibits continual electrolyte decomposition,transition metal dissolves,surface phase transition and gas generation.In addition,TMSP also removes trace H_(2)O/HF in the electrolyte to increase the electrolyte stability.Owing to the synergistic effect of Li DFOB and TMSP,the Li/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) half cells exhibit the capacity retention 76.3%after 500 cycles at a super high voltage of 4.7 V,the graphite/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)full cells exhibit high capacity retention of 82.8%after 500 cycles at 4.5 V,and Li/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)pouch cells exhibit high capacity retention 94%after 200 cycles at 4.5 V.This work is expected to provide an effective electrolyte optimizing strategy compatible with high energy density lithium-ion battery manufacturing systems.展开更多
There have been few reports concerning the hydrothermal synthesis of silicon anode materials. In this manuscript, starting from the very cheap silica sol, we hydrothermally prepared porous silicon nanospheres in an au...There have been few reports concerning the hydrothermal synthesis of silicon anode materials. In this manuscript, starting from the very cheap silica sol, we hydrothermally prepared porous silicon nanospheres in an autoclave at 180 ℃. As anode materials for lithium-ion batteries (LIBs), the as-prepared nano-silicon anode without any carbon coating delivers a high reversible specific capacity of 2,650 mAh·g^-1 at 0.36 A·g^-1 and a significant cycling stability of about 950 mAh·g^-1 at 3.6 A·g^-1 during 500 cycles.展开更多
基金supported by the National Natural Science Foundation of China(52172201,51732005,51902118,and 52102249)China Postdoctoral Science Foundation(2019M662609 and 2020T130217)。
文摘The LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(Ni-rich NCM)cathode materials suffer from electrochemical performance degradation upon cycling due to detrimental cathode interface reactions and irreversible surface phase transition when operating at a high voltage(≥4.5 V).Herein,a traditional carbonate electrolyte with lithium difluoro(oxalato)borate(Li DFOB)and tris(trimethylsilyl)phosphate(TMSP)as dual additives that can preferentially oxidize and decompose to form a stable F,B and Si-rich cathode-electrolyte interphase(CEI)that effectively inhibits continual electrolyte decomposition,transition metal dissolves,surface phase transition and gas generation.In addition,TMSP also removes trace H_(2)O/HF in the electrolyte to increase the electrolyte stability.Owing to the synergistic effect of Li DFOB and TMSP,the Li/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) half cells exhibit the capacity retention 76.3%after 500 cycles at a super high voltage of 4.7 V,the graphite/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)full cells exhibit high capacity retention of 82.8%after 500 cycles at 4.5 V,and Li/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)pouch cells exhibit high capacity retention 94%after 200 cycles at 4.5 V.This work is expected to provide an effective electrolyte optimizing strategy compatible with high energy density lithium-ion battery manufacturing systems.
文摘There have been few reports concerning the hydrothermal synthesis of silicon anode materials. In this manuscript, starting from the very cheap silica sol, we hydrothermally prepared porous silicon nanospheres in an autoclave at 180 ℃. As anode materials for lithium-ion batteries (LIBs), the as-prepared nano-silicon anode without any carbon coating delivers a high reversible specific capacity of 2,650 mAh·g^-1 at 0.36 A·g^-1 and a significant cycling stability of about 950 mAh·g^-1 at 3.6 A·g^-1 during 500 cycles.