在图形处理器(GPU)上实现对角稀疏矩阵向量乘法(SpMV)可以充分利用GPU的并行计算能力,并加速矩阵向量乘法;然而,相关主流算法存在零元填充数据多、计算效率低的问题。针对上述问题,提出一种对角SpMV算法DIA-Dynamic(DIAgonal-Dynamic)...在图形处理器(GPU)上实现对角稀疏矩阵向量乘法(SpMV)可以充分利用GPU的并行计算能力,并加速矩阵向量乘法;然而,相关主流算法存在零元填充数据多、计算效率低的问题。针对上述问题,提出一种对角SpMV算法DIA-Dynamic(DIAgonal-Dynamic)。首先,设计一种全新的动态划分策略,根据矩阵的不同特征进行分块,在保证GPU高计算效率的同时大幅减少零元填充,去除冗余计算量;其次,提出一种对角稀疏矩阵存储格式BDIA(Block DIAgonal)存储分块数据,并调整数据布局,提高GPU上的访存性能;最后,基于GPU的底层进行条件分支优化,以减少分支判断,并使用动态共享内存解决向量的不规则访问问题。DIA-Dynamic与前沿Tile SpMV算法相比,平均加速比达到了1.88;与前沿BRCSD(Diagonal Compressed Storage based on Row-Blocks)-Ⅱ算法相比,平均零元填充减少了43%,平均加速比达到了1.70。实验结果表明,DIA-Dynamic能够有效提高GPU上对角SpMV的计算效率,缩短计算时间,提升程序性能。展开更多
矩阵主特征向量(principal eigenvectors computing,PEC)的求解是科学与工程计算中的一个重要问题。随着图形处理单元通用计算(general-purpose computing on graphics pro cessing unit,GPGPU)的兴起,利用GPU来优化大规模稀疏矩阵的图...矩阵主特征向量(principal eigenvectors computing,PEC)的求解是科学与工程计算中的一个重要问题。随着图形处理单元通用计算(general-purpose computing on graphics pro cessing unit,GPGPU)的兴起,利用GPU来优化大规模稀疏矩阵的图形处理单元求解得到了广泛关注。分别从应用特征和GPU体系结构特征两方面分析了PEC运算的性能瓶颈,提出了一种面向GPU的稀疏矩阵存储格式——GPU-ELL和一个针对GPU的线程优化映射策略,并设计了相应的PEC优化执行算法。在ATI HD Radeon5850上的实验结果表明,相对于传统CPU,该方案获得了最多200倍左右的加速,相对于已有GPU上的实现,也获得了2倍的加速。展开更多
文摘在图形处理器(GPU)上实现对角稀疏矩阵向量乘法(SpMV)可以充分利用GPU的并行计算能力,并加速矩阵向量乘法;然而,相关主流算法存在零元填充数据多、计算效率低的问题。针对上述问题,提出一种对角SpMV算法DIA-Dynamic(DIAgonal-Dynamic)。首先,设计一种全新的动态划分策略,根据矩阵的不同特征进行分块,在保证GPU高计算效率的同时大幅减少零元填充,去除冗余计算量;其次,提出一种对角稀疏矩阵存储格式BDIA(Block DIAgonal)存储分块数据,并调整数据布局,提高GPU上的访存性能;最后,基于GPU的底层进行条件分支优化,以减少分支判断,并使用动态共享内存解决向量的不规则访问问题。DIA-Dynamic与前沿Tile SpMV算法相比,平均加速比达到了1.88;与前沿BRCSD(Diagonal Compressed Storage based on Row-Blocks)-Ⅱ算法相比,平均零元填充减少了43%,平均加速比达到了1.70。实验结果表明,DIA-Dynamic能够有效提高GPU上对角SpMV的计算效率,缩短计算时间,提升程序性能。
文摘矩阵主特征向量(principal eigenvectors computing,PEC)的求解是科学与工程计算中的一个重要问题。随着图形处理单元通用计算(general-purpose computing on graphics pro cessing unit,GPGPU)的兴起,利用GPU来优化大规模稀疏矩阵的图形处理单元求解得到了广泛关注。分别从应用特征和GPU体系结构特征两方面分析了PEC运算的性能瓶颈,提出了一种面向GPU的稀疏矩阵存储格式——GPU-ELL和一个针对GPU的线程优化映射策略,并设计了相应的PEC优化执行算法。在ATI HD Radeon5850上的实验结果表明,相对于传统CPU,该方案获得了最多200倍左右的加速,相对于已有GPU上的实现,也获得了2倍的加速。