期刊导航
期刊开放获取
VIP36
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于动态图卷积和离散哈特莱转换差异性池化的点云数据分类分割网络
被引量:
7
1
作者
史怡
魏东
+2 位作者
宋强
何莲
王竟爽
《计算机应用》
CSCD
北大核心
2022年第S01期292-297,共6页
针对目前可以直接处理原始点云数据的深度学习网络PointNet,忽略了点与点之间的拓扑关系和全局特征信息单一的缺陷,提出一种基于动态图卷积和离散哈特莱转换(DHT)差异性池化的点云数据分类分割网络。首先,设计动态图卷积模块构建局部邻...
针对目前可以直接处理原始点云数据的深度学习网络PointNet,忽略了点与点之间的拓扑关系和全局特征信息单一的缺陷,提出一种基于动态图卷积和离散哈特莱转换(DHT)差异性池化的点云数据分类分割网络。首先,设计动态图卷积模块构建局部邻域图结构,通过图卷积网络获得点与点之间的位置关系,同时采用动态更新图结构的方式,增强网络表征能力;然后,通过离散哈特莱转换将特征转换到指定维度;最后,通过最大池化和平均池化并联通道获得全局特征。实验结果证明:提出的网络模型与PointNet网络模型在同样的数据集和评价标准上对比,点云分类任务上总体精度提高2.6个百分点,部件分割任务平均交并比(mIoU)提高4.1个百分点,场景语义分割任务mIoU提高8.6个百分点。通过运用该网络模型能有效提升点云数据分类分割的准确率,同时该网络具有更强的鲁棒性。
展开更多
关键词
点云数据
深度学习
分类分割
图卷积
离散哈特莱转换
在线阅读
下载PDF
职称材料
题名
基于动态图卷积和离散哈特莱转换差异性池化的点云数据分类分割网络
被引量:
7
1
作者
史怡
魏东
宋强
何莲
王竟爽
机构
辽宁科技大学电子与信息工程学院
中国科学院成都计算机应用研究所
深圳市中钞科信金融科技有限公司
出处
《计算机应用》
CSCD
北大核心
2022年第S01期292-297,共6页
文摘
针对目前可以直接处理原始点云数据的深度学习网络PointNet,忽略了点与点之间的拓扑关系和全局特征信息单一的缺陷,提出一种基于动态图卷积和离散哈特莱转换(DHT)差异性池化的点云数据分类分割网络。首先,设计动态图卷积模块构建局部邻域图结构,通过图卷积网络获得点与点之间的位置关系,同时采用动态更新图结构的方式,增强网络表征能力;然后,通过离散哈特莱转换将特征转换到指定维度;最后,通过最大池化和平均池化并联通道获得全局特征。实验结果证明:提出的网络模型与PointNet网络模型在同样的数据集和评价标准上对比,点云分类任务上总体精度提高2.6个百分点,部件分割任务平均交并比(mIoU)提高4.1个百分点,场景语义分割任务mIoU提高8.6个百分点。通过运用该网络模型能有效提升点云数据分类分割的准确率,同时该网络具有更强的鲁棒性。
关键词
点云数据
深度学习
分类分割
图卷积
离散哈特莱转换
Keywords
point cloud data
deep learning
classification and segmentation
graph convolution
Discrete Hartley Transform(DHT)
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于动态图卷积和离散哈特莱转换差异性池化的点云数据分类分割网络
史怡
魏东
宋强
何莲
王竟爽
《计算机应用》
CSCD
北大核心
2022
7
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部