期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
精英遗传改进的非线性灰色神经网络算子与军费开支多目标组合预测应用 被引量:2
1
作者 张侃 刘宝平 黄栋 《系统工程与电子技术》 EI CSCD 北大核心 2018年第5期1070-1078,共9页
军费开支属于复杂经济系统下具有宏观经济特征的一类非线性时间序列。在多目标组合下的军费开支预测问题研究背景下,提出了一种基于精英遗传算法(elite genetic algorithm,EGA)改进的非线性灰色神经网络计量组合预测模型,给出了总体建... 军费开支属于复杂经济系统下具有宏观经济特征的一类非线性时间序列。在多目标组合下的军费开支预测问题研究背景下,提出了一种基于精英遗传算法(elite genetic algorithm,EGA)改进的非线性灰色神经网络计量组合预测模型,给出了总体建模思路与非线性灰色神经网络算子分系统和EGA分系统设计方法,解决了多准则目标优化的NP完全问题,并对模型的预测效果进行比较分析。采集美国27年间(1990-2016年)军费开支时间序列进行实证检验,分析结论认为非线性灰色神经网络算子能够有效提高模型精度,EGA算法在收敛速度与精度上优于标准遗传算法,采用所建立的预测模型进行军费开支预测精度更高,效果更好。 展开更多
关键词 组合预测 非线性残差 灰色神经网络算子 精英遗传算法
在线阅读 下载PDF
一种神经网络算子及其逼近阶估计
2
作者 陈志祥 《高校应用数学学报(A辑)》 CSCD 北大核心 2008年第1期79-85,共7页
讨论了一种神经网络算子f_n(x)=sum from -n^2 to n^2 (f(k/n))/(n~α)b(n^(1-α)(x-k/n)),对f(x)的逼近误差|f_n(x)-f(x)|的上界在f(x)为连续和N阶连续可导两种情形下分别给出了该网络算子逼近的Jackson型估计.
关键词 神经网络算子 连续模 逼近阶
在线阅读 下载PDF
一类神经网络算子的构造与逼近 被引量:3
3
作者 常利苹 曹飞龙 《中国计量大学学报》 2019年第3期337-342,共6页
目的:众所周知,人工神经网络具有很好的函数逼近能力。近年来,已有许多作者论证了该逼近的可行性。本文研究一类以双曲正切函数为激活函数的神经网络算子的构造与逼近问题。方法:首先,利用双曲正切函数的解析性质,对其进行适当的平移和... 目的:众所周知,人工神经网络具有很好的函数逼近能力。近年来,已有许多作者论证了该逼近的可行性。本文研究一类以双曲正切函数为激活函数的神经网络算子的构造与逼近问题。方法:首先,利用双曲正切函数的解析性质,对其进行适当的平移和组合构造一类钟型函数。然后,以所构造的函数作为激活函数定义一类神经网络算子。结果:估计该类算子逼近连续函数的误差,并建立Jackson型定理。结论:用构建的前向神经网络算子作为逼近工具,估计其对目标函数的逼近误差,并以此揭示网络拓扑结构与网络逼近能力之间的关系。 展开更多
关键词 计量 Sigmoid型函数 神经网络算子 逼近 误差
在线阅读 下载PDF
一类拟插值Kantorovich型神经网络算子的估计
4
作者 项承昊 赵易 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第2期195-200,共6页
该文在神经网络算子理论中的Max-product型算子和Kantorovich型算子的基础上,构造了一种由Sigmiodal函数激发的拟插值型的神经网络算子,考虑了其对实数域上非负连续函数的点态逼近和一致逼近,并给出了其在L^(p)_(+)(ℝ)空间上的逼近定理.
关键词 神经网络算子 KANTOROVICH型算子 Max-product型算子 逼近
在线阅读 下载PDF
修正的线性和幂函数的神经网络算子的构造与逼近
5
作者 李秉坤 陈志祥 《绍兴文理学院学报》 2022年第10期60-66,共7页
研究修正的幂函数作为激活函数的神经网络算子的构造与逼近问题.首先考虑以修正的一次幂函数作为激活函数的单隐层插值网络,并给出其外权的计算和对连续的目标函数的逼近估计.其次,研究了以修正的次数不超过r次的幂函数作为激活函数的网... 研究修正的幂函数作为激活函数的神经网络算子的构造与逼近问题.首先考虑以修正的一次幂函数作为激活函数的单隐层插值网络,并给出其外权的计算和对连续的目标函数的逼近估计.其次,研究了以修正的次数不超过r次的幂函数作为激活函数的网络,并借助样条逼近的理论,得到了网络对满足一定条件的目标函数的逼近误差估计. 展开更多
关键词 神经网络算子 插值 逼近 连续模
在线阅读 下载PDF
基于深度算子神经网络的翼型失速颤振预测 被引量:1
6
作者 席梓严 戴玉婷 +1 位作者 黄广靖 杨超 《力学学报》 EI CAS CSCD 北大核心 2024年第3期626-634,共9页
失速颤振是弹性结构大幅俯仰振动与动态失速气动力耦合所发生的一种单自由度失稳现象,需有效预测其失稳分岔速度与失稳后的极限环振荡幅值.针对NACA0012翼型大幅俯仰运动气动力预测问题,发展了由嵌入门限循环单元或长短时记忆神经网络... 失速颤振是弹性结构大幅俯仰振动与动态失速气动力耦合所发生的一种单自由度失稳现象,需有效预测其失稳分岔速度与失稳后的极限环振荡幅值.针对NACA0012翼型大幅俯仰运动气动力预测问题,发展了由嵌入门限循环单元或长短时记忆神经网络单元的分支网络(branch net)和主干网络(trunk net)组成的深度算子神经网络(deep operator network, DeepONet)结构.通过给定大幅俯仰运动下的动态失速CFD气动力数据对深度算子神经网络参数进行训练,建立了高精度动态失速气动力的数据驱动模型,并有效预测其他俯仰运动下的非定常气动力.更进一步,将基于深度算子神经网络的非定常气动力数据驱动模型与结构动力学方程耦合,采用数值积分方法预测失速颤振的失稳分岔速度和不同速度下的极限环振荡特性.结果表明,在动态失速气动力预测精度方面,与普通循环神经网络相比,深度算子神经网络通过引入主干网络结构,可考虑运动与气动力间的迟滞特性,气动力预测平均绝对误差降低2%,误差分散性更低;在失速颤振预测方面,极限环振荡幅值误差在2%以内,增加来流速度输入的深度算子神经网络模型预测误差显著小于固定速度输入的算子模型. 展开更多
关键词 失速颤振 深度算子神经网络 动态失速 非定常气动力 神经网络
在线阅读 下载PDF
由斜坡函数激发的神经网络算子逼近 被引量:1
7
作者 虞旦盛 周平 《数学学报(中文版)》 CSCD 北大核心 2016年第5期623-638,共16页
首先,引入一种由斜坡函数激发的神经网络算子,建立了其对连续函数逼近的正、逆定理,给出了其本质逼近阶.其次,引入这种神经网络算子的线性组合以提高逼近阶,并且研究了这种组合的同时逼近问题.最后,利用Steklov函数构造了一种新的神经... 首先,引入一种由斜坡函数激发的神经网络算子,建立了其对连续函数逼近的正、逆定理,给出了其本质逼近阶.其次,引入这种神经网络算子的线性组合以提高逼近阶,并且研究了这种组合的同时逼近问题.最后,利用Steklov函数构造了一种新的神经网络算子,建立了其在L^p[a,b]空间逼近的正、逆定理. 展开更多
关键词 神经网络算子 插值 一致逼近 斜坡函数 同时逼近
原文传递
基于内卷神经网络的轻量化步态识别方法
8
作者 王红茹 王紫薇 Chupalov ALEKSANDR 《应用科技》 CAS 2024年第2期40-47,共8页
现有步态识别方法存在计算量大、识别速率较慢和易受视角变化影响等弊端,会造成模型难以部署、步态识别准确率降低等问题。针对以上问题本文提出一种基于内卷神经网络的高准确率步态识别方法。首先,基于残差网络架构和内卷神经网络算子... 现有步态识别方法存在计算量大、识别速率较慢和易受视角变化影响等弊端,会造成模型难以部署、步态识别准确率降低等问题。针对以上问题本文提出一种基于内卷神经网络的高准确率步态识别方法。首先,基于残差网络架构和内卷神经网络算子提出了内卷神经网络模型,该模型利用内卷层实现步态特征提取以达到减少模型训练参数的目的;然后,在内卷神经网络模型基础上,建立一个由三元组损失函数和传统损失函数Softmax loss组成的联合损失函数,该函数使所提出的模型具有更好的识别性能及更高的跨视角条件的识别准确率;最后,基于CASIA-B步态数据集进行实验验证。实验结果表明,本文所提方法的网络模型参数量仅有5.04 MB,与改进前的残差网络相比参数量减少了53.46%;此外,本文网络在相同视角以及跨视角条件下相比主流算法具有更好的识别准确率,解决了视角变化情况下步态识别准确率降低的问题。 展开更多
关键词 步态识别 内卷神经网络 残差网络 神经网络算子 内卷层 三元组损失函数 传统损失函数 联合损失函数
在线阅读 下载PDF
模糊算子神经网络的函数逼近能力 被引量:1
9
作者 梁久祯 赵建民 《广西师范大学学报(自然科学版)》 CAS 2003年第1期18-22,共5页
研究模糊算子神经网络的函数逼近能力.首先提出传统神经网络和模糊神经网络的一般模型即模糊算子神经网络,又将其进一步推广为广义模糊算子神经网络.考察这两种通用模型的代数结构和分析性质,给出其连续函数的一致逼近定理.其结论是传... 研究模糊算子神经网络的函数逼近能力.首先提出传统神经网络和模糊神经网络的一般模型即模糊算子神经网络,又将其进一步推广为广义模糊算子神经网络.考察这两种通用模型的代数结构和分析性质,给出其连续函数的一致逼近定理.其结论是传统神经网络逼近性质的推广,适用于由任何连续算子构成的多层神经网络(模糊神经网络). 展开更多
关键词 模糊算子神经网络 函数逼近能力 逼近定理 代数结构 广义模糊算子神经网络
在线阅读 下载PDF
Construction of Early-warning Model for Plant Diseases and Pests Based on Improved Neural Network 被引量:2
10
作者 曹志勇 邱靖 +1 位作者 曹志娟 杨毅 《Agricultural Science & Technology》 CAS 2009年第6期135-137,154,共4页
By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant ... By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant diseases based on particle swarm and neural network algorithm was established. The test results showed that the construction of early-warning model is effective and feasible, which will provide a via- ble model structure to establish the effective early-warning platform. 展开更多
关键词 Backward propagation neural network Particle swarm algorithm Plant diseases and pests Early-warning model
在线阅读 下载PDF
Springback prediction for incremental sheet forming based on FEM-PSONN technology 被引量:6
11
作者 韩飞 莫健华 +3 位作者 祁宏伟 龙睿芬 崔晓辉 李中伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1061-1071,共11页
In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath f... In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model. 展开更多
关键词 incremental sheet forming (ISF) springback prediction finite element method (FEM) artificial neural network (ANN) particle swarm optimization (PSO) algorithm
在线阅读 下载PDF
A REAL-VALUED GENETIC ALGORITHM FOR OPTIMIZATION PROBLEM WITH CONTINUOUS VARIABLES
12
作者 严卫 朱兆达 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1997年第1期4-8,共5页
A real valued genetic algorithm(RVGA) for the optimization problem with continuous variables is proposed. It is composed of a simple and general purpose dynamic scaled fitness and selection operator, crossover opera... A real valued genetic algorithm(RVGA) for the optimization problem with continuous variables is proposed. It is composed of a simple and general purpose dynamic scaled fitness and selection operator, crossover operator, mutation operators and adaptive probabilities for these operators. The algorithm is tested by two generally used functions and is used in training a neural network for image recognition. Experimental results show that the algorithm is an efficient global optimization algorithm. 展开更多
关键词 OPTIMIZATION neural networks genetic algorithm crossover operator and mutation operator
在线阅读 下载PDF
Improved Roberts operator for detecting surface defects of heavy rails with superior precision and efficiency 被引量:7
13
作者 石甜 Kong Jianyi +2 位作者 Wang Xingdong Liu Zhao Xiong Jianliang 《High Technology Letters》 EI CAS 2016年第2期207-214,共8页
An experimental platform accompanying with the improved Roberts algorithm has been developed to achieve accurate and real-time edge detection of surface defects on heavy rails.Detection results of scratching defects s... An experimental platform accompanying with the improved Roberts algorithm has been developed to achieve accurate and real-time edge detection of surface defects on heavy rails.Detection results of scratching defects show that the improved Roberts operator can attain accurate positioning to defect contour and get complete edge information.Meanwhile,a decreasing amount of interference noises as well as more precise characteristic parameters of the extracted defects can also be confirmed for the improved algorithm.Furthermore,the BP neural network adopted for defects classification with the improved Roberts operator can obtain the target training precision with 98 iterative steps and time of 2s while that of traditional Roberts operator is 118 steps and 4s.Finally,an enhanced defects identification rate of 13.33%has also been confirmed after the Roberts operator is improved.The proposed detecting platform will be positive in producing high-quality heavy rails and guaranteeing the national transportation safety. 展开更多
关键词 detecting platform Roberts operator defects detection heavy rails identificationrate
在线阅读 下载PDF
Boiler combustion optimization based on ANN and PSO-Powell algorithm 被引量:1
14
作者 戴维葆 邹平华 +1 位作者 冯明华 董占双 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第2期198-203,共6页
To improve the thermal efficiency and reduce nitrogen oxides (NOx ) emissions in a power plant for energy conservation and environment protection, based on the reconstructed section temperature field and other relat... To improve the thermal efficiency and reduce nitrogen oxides (NOx ) emissions in a power plant for energy conservation and environment protection, based on the reconstructed section temperature field and other related parameters, dynamic radial basis function (RBF) artificial neural network (ANN) models for forecasting unburned carbon in fly ash and NO, emissions in flue gas ware developed in this paper, together with a multi-objective optimization system utilizing particle swarm optimization and Powell (PSO-Powell) algorithm. To validate the proposed approach, a series of field tests were conducted in a 350 MW power plant. The results indicate that PSO-Powell algorithm can improve the capability to search optimization solution of PSO algorithm, and the effectiveness of system. Its prospective application in the optimization of a pulverized coal ( PC ) fired boiler is presented as well. 展开更多
关键词 boiler combustion ANN PSO-Powell algorithm multi-objective optimization section temperature field
在线阅读 下载PDF
A Fuzzy Neural Network Model of Linguistic Dynamic Systems Based on Computing with Words
15
作者 蔡国榕 李绍滋 +1 位作者 陈水利 吴云东 《Journal of Donghua University(English Edition)》 EI CAS 2010年第6期813-818,共6页
Linguistic dynamic systems(LDS)are dynamic processes involving computing with words(CW)for modeling and analysis of complex systems.In this paper,a fuzzy neural network(FNN)structure of LDS was proposed.In addition,an... Linguistic dynamic systems(LDS)are dynamic processes involving computing with words(CW)for modeling and analysis of complex systems.In this paper,a fuzzy neural network(FNN)structure of LDS was proposed.In addition,an improved nonlinear particle swarm optimization was employed for training FNN.The experiment results on logistics formulation demonstrates the feasibility and the efficiency of this FNN model. 展开更多
关键词 linguistic dynamic systems(LDS) computing with words(CW) fuzzy neural network(FNN) particle swarm optimization(PSO)
在线阅读 下载PDF
Planning of Anti-Disaster Transformer Substation Based on NN and PSO
16
作者 Tao Wang Xiaolei Yang +2 位作者 Qijun Tang Jia Li Xuandong Liu 《Journal of Energy and Power Engineering》 2013年第10期1992-1997,共6页
Recently, the frequent extreme natural disasters made enormous damage to the electric grid leading to blackouts. The lifeline system aiming at providing continuous power supply for the important load in extreme natura... Recently, the frequent extreme natural disasters made enormous damage to the electric grid leading to blackouts. The lifeline system aiming at providing continuous power supply for the important load in extreme natural disasters was designed in that condition. In this paper, a developed model for planning of the transformer substation in lifeline system which considered the effect of existing transformer substations, the motivated areas and punishment areas was proposed. The Hopfield NN (neural network) was adopted to solve the feeders and the PSO (particle swarm optimization) was adopted to new the locations of the transformer substations based on the feeders. The planning result not only took fully use of the existing substation but also got the suitable location for new construction which was satisfactory. 展开更多
关键词 Lifeline system transformer substation Hopfield NN PSO.
在线阅读 下载PDF
Control of Neural Network Feedback Linearization Based on Chaotic Particle Swarm Optimization 被引量:1
17
作者 S.X. Wang H. Li Z.X. Li 《Journal of Energy and Power Engineering》 2010年第4期37-44,共8页
A new chaotic particle swarm algorithm is proposed in order to avoid the premature convergence of the particle swarm optimization and the shortcomings of the chaotic optimization, such as slow searching speed and low ... A new chaotic particle swarm algorithm is proposed in order to avoid the premature convergence of the particle swarm optimization and the shortcomings of the chaotic optimization, such as slow searching speed and low accuracy when used in the multivariable systems or in large search space. The new algorithm combines the particle swarm algorithm and the chaotic optimization, using randomness and ergodicity of chaos to overcome the premature convergence of the particle swarm optimization. At the same time, a new neural network feedback linearization control system is built to control the single-machine infinite-bus system. The network parameters are trained by the chaos particle swarm algorithm, which makes the control achieve optimization and the control law of prime mover output torque obtained. Finally, numerical simulation and practical application validate the effectiveness of the method. 展开更多
关键词 Chaos particle swarm algorithm OPTIMIZATION neural network single-machine infinite-bus system feedback linearization.
在线阅读 下载PDF
Parameters inversion of high central core rockfill dams based on a novel genetic algorithm 被引量:16
18
作者 ZHOU Wei LI Shao Lin +3 位作者 MA Gang CHANG Xiao Lin MA Xing ZHANG Chao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第5期783-794,共12页
Parameters identification of rockfill materials is a crucial issue for high rockfill dams. Because of the scale effect, random sampling and sample disturbance, it is difficult to obtain the actual mechanical propertie... Parameters identification of rockfill materials is a crucial issue for high rockfill dams. Because of the scale effect, random sampling and sample disturbance, it is difficult to obtain the actual mechanical properties of rockfill from laboratory tests. Parameters inversion based on in situ monitoring data has been proven to be an efficient method for identifying the exact parameters of the rockfill. In this paper, we propose a modified genetic algorithm to solve the high-dimension multimodal and nonlinear optimal parameters inversion problem. A novel crossover operator based on the sum of differences in gene fragments(So DX) is proposed, inspired by the cloning of superior genes in genetic engineering. The crossover points are selected according to the difference in the gene fragments, defining the adaptive length. The crossover operator increases the speed and accuracy of algorithm convergence by reducing the inbreeding and enhancing the global search capability of the genetic algorithm. This algorithm is compared with two existing crossover operators. The modified genetic algorithm is then used in combination with radial basis function neural networks(RBFNN) to perform the parameters back analysis of a high central earth core rockfill dam. The settlements simulated using the identified parameters show good agreement with the monitoring data, illustrating that the back analysis is reasonable and accurate. The proposed genetic algorithm has considerable superiority for nonlinear multimodal parameter identification problems. 展开更多
关键词 rockfill dam parameters back analysis genetic algorithm crossover operator sum of differences in gene fragments
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部