Magnetic starch particles (MSPs) were synthesized in water-in-oil mieroemulsion at room temperature. MSPs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTI...Magnetic starch particles (MSPs) were synthesized in water-in-oil mieroemulsion at room temperature. MSPs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), zeta potential system, thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM). The average diameter of the MSPs was 220 nm, dispersed with well-proportioned size and magnetic resonance, the saturation magnetization was 3.64 A.mR/kg. MSP was coated with poly-L-lysine (PLL), and then the surface of PLL-MSP was combined with fluorescein isothiocynate (FITC). Results show that fluorescent/magnetic starch particles (FMSPs) are of stable photo-bleaching capability compared with free FITC, with low bio-toxicity and certain function of magnetic separation. It is expected that FMSPs are bifimctional nano-materials including fluorescence labelling and magnetic separation.展开更多
In this paper, by applying the extended 3acobi elliptic function expansion method, the envelope periodic solutions and corresponding dark soliton solution, bright soliton solution to Bose-Einstein condensation in line...In this paper, by applying the extended 3acobi elliptic function expansion method, the envelope periodic solutions and corresponding dark soliton solution, bright soliton solution to Bose-Einstein condensation in linear magnetic field and time-dependent laser field are obtained.展开更多
We have designed and synthesized NaGdF4:Nd^3+, Yb^3+, Tm^3+. magnetic nano- phosphors with combined dual-mode downconversion (DC) and upconversion (UC) photoluminescence upon 800 run excitation. Hexagonal-phas...We have designed and synthesized NaGdF4:Nd^3+, Yb^3+, Tm^3+. magnetic nano- phosphors with combined dual-mode downconversion (DC) and upconversion (UC) photoluminescence upon 800 run excitation. Hexagonal-phase NaGdF4:Nd^3+, Yb^3+, Tm^3+ nanocrystals (NCs) with an average size of 21 nm were synthesized using a solvothermal approach. Nd^3+, Yb^3+, Tm^3+ triple-doped NaGdF4 NCs exhibit a broad range of photoluminescence peaks covering a near infrared first/second window (860-900, 1,000, and 1,060 nm), and visible emission including blue (475 nm), green (520 and 542 nm) and yellow (587 nm) after excitation at 800 nm. A mechanism involving circulation of energy over Gd^3+ sublattices as bridge ions and final trapping by the initial activator ions (Nd^3+) has been proposed. Penetration depth studies indicate that NIR emission is easily detected even at a large tissue thickness of 10 mm. These paramagnetic nanophosphors demonstrate a large magnetization value of 1.88 emu/g at 20 kOe and longitudinal relaxivity value of 1.2537 mM-1.S-1 as a Tl-weighted magnetic resonance imaging contrast agent. These NaGdF4:Nd^3+, Yb^3+ Tm^3+ NCs are promising for applications in biological and magnetic resonance imaging.展开更多
Nucleation and growth lead to substantial strain in nanoparticles embedded in a host matrix. The distribution of strain field plays an important role in the physical properties of nanoparticles. Magnetic Ni/NiO core/s...Nucleation and growth lead to substantial strain in nanoparticles embedded in a host matrix. The distribution of strain field plays an important role in the physical properties of nanoparticles. Magnetic Ni/NiO core/shell nanoparticles embedded in the amorphous Al2O3 matrix were fabricated by pulsed laser deposition. The results from a high-resolution transmission electron microscope also revealed that the core/shell nanoparticles consist of a single crystal Ni core with a faced-centered cubic struc- ture (Space Group FM-3M) and polycrystalline Nit shell with a trigonal/rhombohedral structure (Space Group R-3mH). The growth strain of Ni/NiO core/shell nanoparticles embedded in the Al2O3 matrix was investigated. Finite element calculations clearly indicate that the Nit shell incurs large compressive strain. The compressive strain existing at the Nit shell area ena- bles the shell material at the interface to adapt to the lattice parameters of Ni core. This process results in a relatively good crystallinity near the interface, which may be associated with the higher exchange coupling between the ferromagnetic Ni core and antiferromagnetic Nit shell.展开更多
Switching on/off single-molecule magnets(SMMs)at room temperature is still a challenge in moleculebased magnets.Herein,two photochromic Ln-based(Ln=Dy,Tb)phosphonate coordinated polymers were synthesized with regulabl...Switching on/off single-molecule magnets(SMMs)at room temperature is still a challenge in moleculebased magnets.Herein,two photochromic Ln-based(Ln=Dy,Tb)phosphonate coordinated polymers were synthesized with regulable SMM behavior.The reversible room-temperature photo-coloration was an electron transfer process with a generation of relatively stable radicals,characterized by structural analyses,ultraviolet-visible,luminescence and electron spin resonance spectra and magnetic measurements.Importantly,owing to the antiferromagnetic coupling interactions between Ln^(3+) ions and photogenerated radicals,the room-temperature light irradiation surprisingly switched off the SMM behavior,showing the first example of radicalquenched SMMs in the molecule-based magnets.Moreover,the silient SMM behavior could be recovered after eliminating photogenerated radicals via heat treatment,showing a reversible off/on switch of SMMs via light and heat.This work constructs a system for switching off/on SMMs through electron transfer photochromism,providing a visual operation way via naked-eye-detectable coloration for the switchable SMMs.展开更多
In this paper, the nonlinear interaction of ultra-high power laser beam with fusion plasma at relativistic regime in the presence of obliquely external magnetic field has been studied. Imposing an external magnetic fi...In this paper, the nonlinear interaction of ultra-high power laser beam with fusion plasma at relativistic regime in the presence of obliquely external magnetic field has been studied. Imposing an external magnetic field on plasma can modify the density profile of the plasma so that the thermal conductivity of electrons reduces which is considered to be the decrease of the threshold energy for ignition. To achieve the fusion of Hydrogen–Boron(HB) fuel,the block acceleration model of plasma is employed. Energy production by HB isotopes can be of interest, since its reaction does not generate radioactive tritium. By using the inhibit factor in the block model acceleration of plasma and Maxwell's as well as the momentum transfer equations, the electron density distribution and dielectric permittivity of the plasma medium are obtained. Numerical results indicate that with increasing the intensity of the external magnetic field, the oscillation of the laser magnetic field decreases, while the dielectric permittivity increases. Moreover, the amplitude of the electron density becomes highly peaked and the plasma electrons are strongly bunched with increasing the intensity of external magnetic field. Therefore, the magnetized plasma can act as a positive focusing lens to enhance the fusion process. Besides, we find that with increasing θ-angle(from oblique external magnetic field) between 0 and 90°, the dielectric permittivity increases, while for θ between 90° and 180°, the dielectric permittivity decreases with increasing θ.展开更多
基金Project(200501) supported by the "985" Program of China
文摘Magnetic starch particles (MSPs) were synthesized in water-in-oil mieroemulsion at room temperature. MSPs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), zeta potential system, thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM). The average diameter of the MSPs was 220 nm, dispersed with well-proportioned size and magnetic resonance, the saturation magnetization was 3.64 A.mR/kg. MSP was coated with poly-L-lysine (PLL), and then the surface of PLL-MSP was combined with fluorescein isothiocynate (FITC). Results show that fluorescent/magnetic starch particles (FMSPs) are of stable photo-bleaching capability compared with free FITC, with low bio-toxicity and certain function of magnetic separation. It is expected that FMSPs are bifimctional nano-materials including fluorescence labelling and magnetic separation.
基金Supported by National Natural Science Foundation of China under Grant No.90511009
文摘In this paper, by applying the extended 3acobi elliptic function expansion method, the envelope periodic solutions and corresponding dark soliton solution, bright soliton solution to Bose-Einstein condensation in linear magnetic field and time-dependent laser field are obtained.
文摘We have designed and synthesized NaGdF4:Nd^3+, Yb^3+, Tm^3+. magnetic nano- phosphors with combined dual-mode downconversion (DC) and upconversion (UC) photoluminescence upon 800 run excitation. Hexagonal-phase NaGdF4:Nd^3+, Yb^3+, Tm^3+ nanocrystals (NCs) with an average size of 21 nm were synthesized using a solvothermal approach. Nd^3+, Yb^3+, Tm^3+ triple-doped NaGdF4 NCs exhibit a broad range of photoluminescence peaks covering a near infrared first/second window (860-900, 1,000, and 1,060 nm), and visible emission including blue (475 nm), green (520 and 542 nm) and yellow (587 nm) after excitation at 800 nm. A mechanism involving circulation of energy over Gd^3+ sublattices as bridge ions and final trapping by the initial activator ions (Nd^3+) has been proposed. Penetration depth studies indicate that NIR emission is easily detected even at a large tissue thickness of 10 mm. These paramagnetic nanophosphors demonstrate a large magnetization value of 1.88 emu/g at 20 kOe and longitudinal relaxivity value of 1.2537 mM-1.S-1 as a Tl-weighted magnetic resonance imaging contrast agent. These NaGdF4:Nd^3+, Yb^3+ Tm^3+ NCs are promising for applications in biological and magnetic resonance imaging.
基金supported by the National Natural Science Foundation of China (Grant No. 11004087)the Natural Science Foundation of Jiangxi Province of China (Grant No. 2009GQW0007)the Educational Commission of Jiangxi Province of China (Grant Nos. GJJ10087 and GJJ11074)
文摘Nucleation and growth lead to substantial strain in nanoparticles embedded in a host matrix. The distribution of strain field plays an important role in the physical properties of nanoparticles. Magnetic Ni/NiO core/shell nanoparticles embedded in the amorphous Al2O3 matrix were fabricated by pulsed laser deposition. The results from a high-resolution transmission electron microscope also revealed that the core/shell nanoparticles consist of a single crystal Ni core with a faced-centered cubic struc- ture (Space Group FM-3M) and polycrystalline Nit shell with a trigonal/rhombohedral structure (Space Group R-3mH). The growth strain of Ni/NiO core/shell nanoparticles embedded in the Al2O3 matrix was investigated. Finite element calculations clearly indicate that the Nit shell incurs large compressive strain. The compressive strain existing at the Nit shell area ena- bles the shell material at the interface to adapt to the lattice parameters of Ni core. This process results in a relatively good crystallinity near the interface, which may be associated with the higher exchange coupling between the ferromagnetic Ni core and antiferromagnetic Nit shell.
基金supported by the National Natural Science Foundation of China(21901133,22171155 and 22071126)the State Key Laboratory of Fine Chemicals(KF1905)。
文摘Switching on/off single-molecule magnets(SMMs)at room temperature is still a challenge in moleculebased magnets.Herein,two photochromic Ln-based(Ln=Dy,Tb)phosphonate coordinated polymers were synthesized with regulable SMM behavior.The reversible room-temperature photo-coloration was an electron transfer process with a generation of relatively stable radicals,characterized by structural analyses,ultraviolet-visible,luminescence and electron spin resonance spectra and magnetic measurements.Importantly,owing to the antiferromagnetic coupling interactions between Ln^(3+) ions and photogenerated radicals,the room-temperature light irradiation surprisingly switched off the SMM behavior,showing the first example of radicalquenched SMMs in the molecule-based magnets.Moreover,the silient SMM behavior could be recovered after eliminating photogenerated radicals via heat treatment,showing a reversible off/on switch of SMMs via light and heat.This work constructs a system for switching off/on SMMs through electron transfer photochromism,providing a visual operation way via naked-eye-detectable coloration for the switchable SMMs.
文摘In this paper, the nonlinear interaction of ultra-high power laser beam with fusion plasma at relativistic regime in the presence of obliquely external magnetic field has been studied. Imposing an external magnetic field on plasma can modify the density profile of the plasma so that the thermal conductivity of electrons reduces which is considered to be the decrease of the threshold energy for ignition. To achieve the fusion of Hydrogen–Boron(HB) fuel,the block acceleration model of plasma is employed. Energy production by HB isotopes can be of interest, since its reaction does not generate radioactive tritium. By using the inhibit factor in the block model acceleration of plasma and Maxwell's as well as the momentum transfer equations, the electron density distribution and dielectric permittivity of the plasma medium are obtained. Numerical results indicate that with increasing the intensity of the external magnetic field, the oscillation of the laser magnetic field decreases, while the dielectric permittivity increases. Moreover, the amplitude of the electron density becomes highly peaked and the plasma electrons are strongly bunched with increasing the intensity of external magnetic field. Therefore, the magnetized plasma can act as a positive focusing lens to enhance the fusion process. Besides, we find that with increasing θ-angle(from oblique external magnetic field) between 0 and 90°, the dielectric permittivity increases, while for θ between 90° and 180°, the dielectric permittivity decreases with increasing θ.