The impacts of elevated atmospheric CO2 concentrations (500 靘olmol-1and 700 靘olmol-1) on total soil respiration and the contribution of root respiration of Pinus koraiensis seedlings were investigated from May to Oc...The impacts of elevated atmospheric CO2 concentrations (500 靘olmol-1and 700 靘olmol-1) on total soil respiration and the contribution of root respiration of Pinus koraiensis seedlings were investigated from May to October in 2003 at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Jilin Province, China. After four growing seasons in top-open chambers exposed to elevated CO2, the total soil respiration and roots respiration of Pinus koraiensis seedlings were measured by a LI-6400-09 soil CO2 flux chamber. Three PVC cylinders in each chamber were inserted about 30 cm into the soil in-stantaneously to terminate the supply of current photosynthates from the tree canopy to roots for separating the root respiration from total soil respiration. Soil respirations both inside and outside of the cylinders were measured on June 16, August 20 and October 8, respectively. The results indicated that: there was a marked diurnal change in air temperature and soil temperature at depth of 5 cm on June 16, the maximum of soil temperature at depth of 5 cm lagged behind that of air temperature, no differences in temperature between treatments were found (P>0.05). The total soil respiration and soil respiration with roots severed showed strong diurnal and seasonal patterns. There was marked difference in total soil respiration and soil respiration with roots severed between treatments (P<0.01); Mean total soil respiration and contribution of root under different treatments were 3.26, 4.78 and 1.47 靘olm 2s-1, 11.5%, 43.1% and 27.9% on June 16, August 20 and October 8, respectively.展开更多
Based on historical data and field investigation, some major fluxes and reserves of carbon were estimated, and a tentative analysis of the soil carbon balance was made in a native grassland community in the Xilin Rive...Based on historical data and field investigation, some major fluxes and reserves of carbon were estimated, and a tentative analysis of the soil carbon balance was made in a native grassland community in the Xilin River basin of Inner Mongolia. Major results were reported as follows: 1) Annual average carbon input from above-ground biomass production was 79.8 g C(.)m(-2.)a(-1), and from root biomass to 30 cm. depth averaged 311.9 g C(.)m(-2.)a(-1). The summed mean annual carbon input of shoot and root materials in the study site was approximately 391.7 g C(.)m(-2.)a(-1). 2) The annual amount of above-ground biomass consumed by insects averaged 14.7 g C(.)m(-2.)a(-1), and the carbon output by leaching or light-chemical oxidation was 3.2 g C(.)m(-2.)a(-1) The annual evolution rate of CO2 from net soil respiration averaged 346.9 g C(.)m(-2.)a(-1), and the summed mean annual output was approximately 364.8 g C(.)m(-2.)a(-1). 3) A mature, steady-state system could be assumed for the community for which growth and decay were approximately in balance, with a net carbon accumulation of about 26.9 g C(.)m(-2.)a(-1). Based on the soil organic carbon density of the field, the turnover Irate of soil carbon in 0 - 30 cm depth was calculated to be 6.2%, with a turnover time of 16 years.展开更多
As per randomized block design, the research had different fertilizer treatments, and the organic matter, respiration, enzyme activity and microbial carbon and nitrogen in reclaimed soil were studied. Fertilization sc...As per randomized block design, the research had different fertilizer treatments, and the organic matter, respiration, enzyme activity and microbial carbon and nitrogen in reclaimed soil were studied. Fertilization schemes were as follows: The treatment without fertilizers(CK), the treatment with chemical fertilizers(C), the treatment with chemical fertilizers and bacterial fertilizer(CB), the treatment with organic fertilizer and chemical fertilizers(CM), and the treatment with chemical fertilizers, organic fertilizer and bacterial fertilizer(CMB). The results showed: Four fertilization treatments could improve the content of soil organic matter. CMB, CM and CB could significantly improve the soil respiration. Organic fertilizer and fertilizer could significantly improve soil enzyme activity, In different growth stages the CMB treatment had highest urease and phosphatase.The most significant in the treatment content of sucrose was CM. Organic fertilizer and microbial fertilizer can significantly improve the microbial carbon and nitrogen in soil. For the microbial biomass carbon, the CMB treatment increased by 11%-34% than CB treatment, and 35%-63% than C treatment. In terms of microbial nitrogen CMB, CM respectively increased by 31%-51% than CB treatment, and 52%-100% compared with C. In the process of land reclamation, we should combine the organic fertilizer, microbial fertilizer and inorganic fertilizer. Only in this way can soil biological activity be accelerated, soil microbial environment improved, and the ripening increased soil nutrient and soil cultivation be enhanced.展开更多
Phyllostachys praecox C. D. Chu et C. S. Chao, a favored bamboo shoot species, has been widely planted in recent years. Four stands with different historical management practices were selected for this study to unders...Phyllostachys praecox C. D. Chu et C. S. Chao, a favored bamboo shoot species, has been widely planted in recent years. Four stands with different historical management practices were selected for this study to understand the evolution of soil microbial ecology by determining the effects of a new mulching and heavy fertilization practice on soil quality using microbiological parameters. Compared with the traditional practice (index 1), microbial biomass carbon (MBC) and soil microbial respiration carbon (MRC) with the new management practice significantly decreased (P < 0.01 and P < 0.05,respectively) with 1-2 years of mulching (index 2) and then for continued mulching significantly increased (P < 0.05). The ratios of MBC/TOC (total organic carbon) and MRC/TOC also significantly diminished (P < 0.05) with mulching. The average well color development (AWCD) and Shannon index decreased with mulching time, and the significant decrease(P < 0.05) in Shannon index occurred from index 2 to index 3. The results from a principal components analysis (PCA)showed that the scores of the first principal component for indexes 1 and 2 were significantly larger (P < 0.05) than soils mulched 3-4 years or 5-6 years. Also, the second principal component scores for index 1 were larger than those for index 2, suggesting that the ability of soil microorganisms to utilize soil carbon was decreasing with longer use of the new management practice and causing a deterioration of soil biological properties.展开更多
The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol^-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil resp...The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol^-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil respiration during seedling growth of Pinus sylvestris vat. sylvestriformis. During the four growing seasons (May-October) from 1999 to 2003, the seedlings were exposed to elevated concentrations of CO2 in open-top chambers. The total soil respiration and contribution of root respiration were measured using an LI-6400-09 soil CO2 flux chamber on June 15 and October 8, 2003. To separate root respiration from total soil respiration, three PVC cylinders were inserted approximately 30 cm deep into the soil in each chamber. There were marked diurnal changes in air and soil temperatures on June 15. Both the total soil respiration and the soil respiration without roots showed a strong diurnal pattern, increasing from before sunrise to about 14:00 in the afternoon and then decreasing before the next sunrise. No increase in the mean total soil respiration and mean soil respiration with roots severed was observed under the elevated CO2 treatments on June 15, 2003, as compared to the open field and control chamber with ambient CO2. However, on October 8, 2003, the total soil respiration and soil respiration with roots severed in the open field were lower than those in the control and elevated CO2 chambers. The mean contribution of root respiration measured on June 15, 2003, ranged from 8.3% to 30.5% and on October 8, 2003, from 20.6% to 48.6%.展开更多
It was hypothesized that soil respiration can be affected by canopy composition. Hence, admixture of trees as a common forest management practice may cause significant change in the carbon cycling. This study was cond...It was hypothesized that soil respiration can be affected by canopy composition. Hence, admixture of trees as a common forest management practice may cause significant change in the carbon cycling. This study was conducted in a mixed spruce-beech stand at Solling forest in central Germany to investigate the effect of canopy composition on soil respiration. The canopy cover was classified in four major canopy classes (pure beech, pure spruce, mixed and gap), and the area under each canopy class was identified as a sub-plot. Soil respiration in each sub-plot (n=4) was measured monthly from Jun 2005 to July 2006. Results show significant difference in annual soil respiration between the beech (359g·m^-2·a^-1 C) and gap (211 g·m^-2·a^-1 C) sub-plots. The estimation of the total below-ground carbon allocation (TBCA) based on a model given by Raich and Nadelhoffer revealed considerably higher root CO2 production in the beech sub-plot (231 g·m^-2·a^-1 C) compare to the gap sub-plot (51 g·m^-2·a^-1 C ). The contribution of the root respiration to the total soil respiration was higher in the soil under the beech canopy (59%) compared with the soil in the gap (29%). The findings suggested that the condition under the beech canopy may cause more desirable micro-site for autotrophic respiration and consequently higher CO2 release into the atmosphere.展开更多
An open-top chamber experiment was conducted at the University of Michigan Biological Station near Pellston, Michigan, USA, to study the effects of soil fertility and CO2 on leaf, stem and root dark respiration (Rd) o...An open-top chamber experiment was conducted at the University of Michigan Biological Station near Pellston, Michigan, USA, to study the effects of soil fertility and CO2 on leaf, stem and root dark respiration (Rd) of Populus tremuloides. Overall, area-based day-time leaf Rd (Rda) was significantly greater at elevated than at ambient CO2 in high-fertility soil, but not in low-fertility soil. Mass-based leaf Rd (Rdm) was overall greater for high- than for low-fertility soil grown trees at elected, but not at ambient CO2. Nighttime leaf Rd. and Rdm were unthected by soil fertility or CO2, nor was stem Rda, which ranged from 1.0 to 1.4 μmol m-2 s-1 in the spring and 3.5 to 4.5 μmol m-2 s-1 in the summer. Root Rda. was significantly higher in high- than in low-fertility soil, but was unaffected by CO2. Since biomass production of P. tremuloides will be significantly greater at elevated CO2 while specific Rd will either increase or remain unchanged, we predict that carbon loss to the atmosphere through respiration from this ecologically important species would increase at higher CO2. Soil fertility would also interact with elevated CO2 in affecting the carbon flow in the plant-soil-air system.展开更多
Over the past three decades,the drawdown of atmospheric CO_(2) in vegetation and soil has fueled net ecosystem production(NEP).Here,a global land-surface model(CABLE)is used to estimate the trend in NEP and its respon...Over the past three decades,the drawdown of atmospheric CO_(2) in vegetation and soil has fueled net ecosystem production(NEP).Here,a global land-surface model(CABLE)is used to estimate the trend in NEP and its response to atmospheric CO_(2),climate change,biological nitrogen(N)fixation,and N deposition under future conditions from 2031 to 2100 in the Belt and Road region.The trend of NEP simulated by CABLE decreases from 0.015 Pg carbon(C)yr^(-2) under present conditions(1936–2005)to−0.023 Pg C yr^(-2) under future conditions.In contrast,the trend in NEP of the CMIP6 ensemble changes from 0.014 Pg C yr^(-2) under present conditions to−0.009 Pg C yr^(-2) under future conditions.This suggests that the trend in the C sink for the Belt and Road region will likely decline in the future.The significant difference in the NEP trend between present and future conditions is mainly caused by the difference in the impact of climate change on NEP.Considering the responses of soil respiration(RH)or net primary production(NPP)to surface air temperature,the trend in surface air temperature changes from 0.01℃ yr^(-1) under present conditions to 0.05℃ yr^(-1) under future conditions.CABLE simulates a greater response of RH to surface temperature than that of NPP under future conditions,which causes a decreasing trend in NEP.In addition,the greater decreasing trend in NEP under future conditions indicates that the C-climate-N interaction at the regional scale should be considered.It is important to estimate the direction and magnitude of C sinks under the C neutrality target.展开更多
Objective BAG3-related myopathy is a rare condition so far reported in twenty patients worldwide.The purpose of this study was to draw attention to this rare disease and to the fact that BAG3-related myopathy should b...Objective BAG3-related myopathy is a rare condition so far reported in twenty patients worldwide.The purpose of this study was to draw attention to this rare disease and to the fact that BAG3-related myopathy should be considered as a rare differential diagnosis of hypercapnia.Methods We report a sporadic case of a 14-year-old Chinese girl with a de novo p.Pro209 Leu mutation in BAG3 and reviewed the literatures for reported cases related to this mutation.Results We described a 14-year-old Chinese girl who presented with gradually appearing symptoms of hypercapnia that required assisted ventilation.The muscle biopsy and the blood whole-exome sequencing results confirmed the diagnosis of myofibrillar myopathy with a de novo p.Pro209 Leu mutation in BAG3.Totally twentyone patients from twenty families with a confirmed diagnosis of BAG3-related myopathy were reported to date,including this patient and literature review.The male to female ratio was 11:10 and most showed initial symptoms in the first decade of life.Most patients presented toe/clumsy walking or running as the onset symptom,followed by muscle weakness or atrophy.Creatine kinase levels were elevated in fourteen patients and were normal in three.Eighteen patients developed respiratory insufficiency during the disease course and thirteen(one could not tolerate non-invasive assisted ventilation)required non-invasive assisted ventilation for treatment.Except for one not reported,heart involvement was found in seventeen patients during the disease course and seven underwent heart transplantation.Z-disk streaming and aggregation could be observed in most of the patients’muscle histology.In the long-term follow-up,five patients died of cardiac or respiratory failure.Conclusion BAG3-associated myopathy is a rare type of myofibrillar myopathy.It should be considered as a rare differential diagnosis of hypercapnia.展开更多
Investigations about laying hens reactions on artificial light conditions were carried out in a climate chamber equipped with a floor housing system for laying hens. The release of moisture increased during light peri...Investigations about laying hens reactions on artificial light conditions were carried out in a climate chamber equipped with a floor housing system for laying hens. The release of moisture increased during light periods probably due to increased activity which increased respiration rate but also on increased scratching which increased evaporation of moisture from bedding material. The daily average was 6.29 g henl h"l at 4 lux and 5.97 g henl hl, at 93 lux which corresponds to a difference of 5%. The level of light intensity seemed to have little influence on the release of moisture. The total release of heat was slightly higher during light periods compared to dark periods. Explanations can be increased activity but also feed intake increasing the metabolic rate during light periods. The daily average of total heat production was 17.0 W per hen at 4 lux and 14.7 at 93 lux which corresponds to a difference of 16%. The release of carbon dioxide increased during light periods probably due to increased activity and respiration.展开更多
The word of “qi” means the air. That is the breathing air exercise of changing air for the body. The oxygen is breathed in and the carbon dioxide is going out. It is including lute style breathing, lower part breat...The word of “qi” means the air. That is the breathing air exercise of changing air for the body. The oxygen is breathed in and the carbon dioxide is going out. It is including lute style breathing, lower part breathing, skin breathing, acupuncture points breathing, baby breathing, etc. Also, there is breathing in long and out, short, one in and three out, counting number, etc. There are so many different kinds method and the effect or result will be totally different. So, we call it helping-life at ancient. It had a completed human medical theory for fundamental to make the life freedom and living colorful.展开更多
文摘The impacts of elevated atmospheric CO2 concentrations (500 靘olmol-1and 700 靘olmol-1) on total soil respiration and the contribution of root respiration of Pinus koraiensis seedlings were investigated from May to October in 2003 at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Jilin Province, China. After four growing seasons in top-open chambers exposed to elevated CO2, the total soil respiration and roots respiration of Pinus koraiensis seedlings were measured by a LI-6400-09 soil CO2 flux chamber. Three PVC cylinders in each chamber were inserted about 30 cm into the soil in-stantaneously to terminate the supply of current photosynthates from the tree canopy to roots for separating the root respiration from total soil respiration. Soil respirations both inside and outside of the cylinders were measured on June 16, August 20 and October 8, respectively. The results indicated that: there was a marked diurnal change in air temperature and soil temperature at depth of 5 cm on June 16, the maximum of soil temperature at depth of 5 cm lagged behind that of air temperature, no differences in temperature between treatments were found (P>0.05). The total soil respiration and soil respiration with roots severed showed strong diurnal and seasonal patterns. There was marked difference in total soil respiration and soil respiration with roots severed between treatments (P<0.01); Mean total soil respiration and contribution of root under different treatments were 3.26, 4.78 and 1.47 靘olm 2s-1, 11.5%, 43.1% and 27.9% on June 16, August 20 and October 8, respectively.
文摘Based on historical data and field investigation, some major fluxes and reserves of carbon were estimated, and a tentative analysis of the soil carbon balance was made in a native grassland community in the Xilin River basin of Inner Mongolia. Major results were reported as follows: 1) Annual average carbon input from above-ground biomass production was 79.8 g C(.)m(-2.)a(-1), and from root biomass to 30 cm. depth averaged 311.9 g C(.)m(-2.)a(-1). The summed mean annual carbon input of shoot and root materials in the study site was approximately 391.7 g C(.)m(-2.)a(-1). 2) The annual amount of above-ground biomass consumed by insects averaged 14.7 g C(.)m(-2.)a(-1), and the carbon output by leaching or light-chemical oxidation was 3.2 g C(.)m(-2.)a(-1) The annual evolution rate of CO2 from net soil respiration averaged 346.9 g C(.)m(-2.)a(-1), and the summed mean annual output was approximately 364.8 g C(.)m(-2.)a(-1). 3) A mature, steady-state system could be assumed for the community for which growth and decay were approximately in balance, with a net carbon accumulation of about 26.9 g C(.)m(-2.)a(-1). Based on the soil organic carbon density of the field, the turnover Irate of soil carbon in 0 - 30 cm depth was calculated to be 6.2%, with a turnover time of 16 years.
基金Supported by Natural Science Foundation of Shanxi Province(2014011001-4)~~
文摘As per randomized block design, the research had different fertilizer treatments, and the organic matter, respiration, enzyme activity and microbial carbon and nitrogen in reclaimed soil were studied. Fertilization schemes were as follows: The treatment without fertilizers(CK), the treatment with chemical fertilizers(C), the treatment with chemical fertilizers and bacterial fertilizer(CB), the treatment with organic fertilizer and chemical fertilizers(CM), and the treatment with chemical fertilizers, organic fertilizer and bacterial fertilizer(CMB). The results showed: Four fertilization treatments could improve the content of soil organic matter. CMB, CM and CB could significantly improve the soil respiration. Organic fertilizer and fertilizer could significantly improve soil enzyme activity, In different growth stages the CMB treatment had highest urease and phosphatase.The most significant in the treatment content of sucrose was CM. Organic fertilizer and microbial fertilizer can significantly improve the microbial carbon and nitrogen in soil. For the microbial biomass carbon, the CMB treatment increased by 11%-34% than CB treatment, and 35%-63% than C treatment. In terms of microbial nitrogen CMB, CM respectively increased by 31%-51% than CB treatment, and 52%-100% compared with C. In the process of land reclamation, we should combine the organic fertilizer, microbial fertilizer and inorganic fertilizer. Only in this way can soil biological activity be accelerated, soil microbial environment improved, and the ripening increased soil nutrient and soil cultivation be enhanced.
文摘Phyllostachys praecox C. D. Chu et C. S. Chao, a favored bamboo shoot species, has been widely planted in recent years. Four stands with different historical management practices were selected for this study to understand the evolution of soil microbial ecology by determining the effects of a new mulching and heavy fertilization practice on soil quality using microbiological parameters. Compared with the traditional practice (index 1), microbial biomass carbon (MBC) and soil microbial respiration carbon (MRC) with the new management practice significantly decreased (P < 0.01 and P < 0.05,respectively) with 1-2 years of mulching (index 2) and then for continued mulching significantly increased (P < 0.05). The ratios of MBC/TOC (total organic carbon) and MRC/TOC also significantly diminished (P < 0.05) with mulching. The average well color development (AWCD) and Shannon index decreased with mulching time, and the significant decrease(P < 0.05) in Shannon index occurred from index 2 to index 3. The results from a principal components analysis (PCA)showed that the scores of the first principal component for indexes 1 and 2 were significantly larger (P < 0.05) than soils mulched 3-4 years or 5-6 years. Also, the second principal component scores for index 1 were larger than those for index 2, suggesting that the ability of soil microorganisms to utilize soil carbon was decreasing with longer use of the new management practice and causing a deterioration of soil biological properties.
基金Project supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (No.KZCX2-YW-416)National NaturM Science Foundation of China (No.90411020)
文摘The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol^-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil respiration during seedling growth of Pinus sylvestris vat. sylvestriformis. During the four growing seasons (May-October) from 1999 to 2003, the seedlings were exposed to elevated concentrations of CO2 in open-top chambers. The total soil respiration and contribution of root respiration were measured using an LI-6400-09 soil CO2 flux chamber on June 15 and October 8, 2003. To separate root respiration from total soil respiration, three PVC cylinders were inserted approximately 30 cm deep into the soil in each chamber. There were marked diurnal changes in air and soil temperatures on June 15. Both the total soil respiration and the soil respiration without roots showed a strong diurnal pattern, increasing from before sunrise to about 14:00 in the afternoon and then decreasing before the next sunrise. No increase in the mean total soil respiration and mean soil respiration with roots severed was observed under the elevated CO2 treatments on June 15, 2003, as compared to the open field and control chamber with ambient CO2. However, on October 8, 2003, the total soil respiration and soil respiration with roots severed in the open field were lower than those in the control and elevated CO2 chambers. The mean contribution of root respiration measured on June 15, 2003, ranged from 8.3% to 30.5% and on October 8, 2003, from 20.6% to 48.6%.
文摘It was hypothesized that soil respiration can be affected by canopy composition. Hence, admixture of trees as a common forest management practice may cause significant change in the carbon cycling. This study was conducted in a mixed spruce-beech stand at Solling forest in central Germany to investigate the effect of canopy composition on soil respiration. The canopy cover was classified in four major canopy classes (pure beech, pure spruce, mixed and gap), and the area under each canopy class was identified as a sub-plot. Soil respiration in each sub-plot (n=4) was measured monthly from Jun 2005 to July 2006. Results show significant difference in annual soil respiration between the beech (359g·m^-2·a^-1 C) and gap (211 g·m^-2·a^-1 C) sub-plots. The estimation of the total below-ground carbon allocation (TBCA) based on a model given by Raich and Nadelhoffer revealed considerably higher root CO2 production in the beech sub-plot (231 g·m^-2·a^-1 C) compare to the gap sub-plot (51 g·m^-2·a^-1 C ). The contribution of the root respiration to the total soil respiration was higher in the soil under the beech canopy (59%) compared with the soil in the gap (29%). The findings suggested that the condition under the beech canopy may cause more desirable micro-site for autotrophic respiration and consequently higher CO2 release into the atmosphere.
基金the National institute for Global Environmental Change (DOENIGEC), Program for Ecosystem Research (DOE-PER Grant D E- FG O Z-9
文摘An open-top chamber experiment was conducted at the University of Michigan Biological Station near Pellston, Michigan, USA, to study the effects of soil fertility and CO2 on leaf, stem and root dark respiration (Rd) of Populus tremuloides. Overall, area-based day-time leaf Rd (Rda) was significantly greater at elevated than at ambient CO2 in high-fertility soil, but not in low-fertility soil. Mass-based leaf Rd (Rdm) was overall greater for high- than for low-fertility soil grown trees at elected, but not at ambient CO2. Nighttime leaf Rd. and Rdm were unthected by soil fertility or CO2, nor was stem Rda, which ranged from 1.0 to 1.4 μmol m-2 s-1 in the spring and 3.5 to 4.5 μmol m-2 s-1 in the summer. Root Rda. was significantly higher in high- than in low-fertility soil, but was unaffected by CO2. Since biomass production of P. tremuloides will be significantly greater at elevated CO2 while specific Rd will either increase or remain unchanged, we predict that carbon loss to the atmosphere through respiration from this ecologically important species would increase at higher CO2. Soil fertility would also interact with elevated CO2 in affecting the carbon flow in the plant-soil-air system.
基金funded by the National Natural Science Foundation of China[grant numbers 41630532,41975112,42175142,and 42175013].
文摘Over the past three decades,the drawdown of atmospheric CO_(2) in vegetation and soil has fueled net ecosystem production(NEP).Here,a global land-surface model(CABLE)is used to estimate the trend in NEP and its response to atmospheric CO_(2),climate change,biological nitrogen(N)fixation,and N deposition under future conditions from 2031 to 2100 in the Belt and Road region.The trend of NEP simulated by CABLE decreases from 0.015 Pg carbon(C)yr^(-2) under present conditions(1936–2005)to−0.023 Pg C yr^(-2) under future conditions.In contrast,the trend in NEP of the CMIP6 ensemble changes from 0.014 Pg C yr^(-2) under present conditions to−0.009 Pg C yr^(-2) under future conditions.This suggests that the trend in the C sink for the Belt and Road region will likely decline in the future.The significant difference in the NEP trend between present and future conditions is mainly caused by the difference in the impact of climate change on NEP.Considering the responses of soil respiration(RH)or net primary production(NPP)to surface air temperature,the trend in surface air temperature changes from 0.01℃ yr^(-1) under present conditions to 0.05℃ yr^(-1) under future conditions.CABLE simulates a greater response of RH to surface temperature than that of NPP under future conditions,which causes a decreasing trend in NEP.In addition,the greater decreasing trend in NEP under future conditions indicates that the C-climate-N interaction at the regional scale should be considered.It is important to estimate the direction and magnitude of C sinks under the C neutrality target.
基金supported by the Youth Program of National Natural Science Foundation of China(Grant No.82003309)the National Key Research and Development Program of China(Grant 2020YFB1313700)。
文摘Objective BAG3-related myopathy is a rare condition so far reported in twenty patients worldwide.The purpose of this study was to draw attention to this rare disease and to the fact that BAG3-related myopathy should be considered as a rare differential diagnosis of hypercapnia.Methods We report a sporadic case of a 14-year-old Chinese girl with a de novo p.Pro209 Leu mutation in BAG3 and reviewed the literatures for reported cases related to this mutation.Results We described a 14-year-old Chinese girl who presented with gradually appearing symptoms of hypercapnia that required assisted ventilation.The muscle biopsy and the blood whole-exome sequencing results confirmed the diagnosis of myofibrillar myopathy with a de novo p.Pro209 Leu mutation in BAG3.Totally twentyone patients from twenty families with a confirmed diagnosis of BAG3-related myopathy were reported to date,including this patient and literature review.The male to female ratio was 11:10 and most showed initial symptoms in the first decade of life.Most patients presented toe/clumsy walking or running as the onset symptom,followed by muscle weakness or atrophy.Creatine kinase levels were elevated in fourteen patients and were normal in three.Eighteen patients developed respiratory insufficiency during the disease course and thirteen(one could not tolerate non-invasive assisted ventilation)required non-invasive assisted ventilation for treatment.Except for one not reported,heart involvement was found in seventeen patients during the disease course and seven underwent heart transplantation.Z-disk streaming and aggregation could be observed in most of the patients’muscle histology.In the long-term follow-up,five patients died of cardiac or respiratory failure.Conclusion BAG3-associated myopathy is a rare type of myofibrillar myopathy.It should be considered as a rare differential diagnosis of hypercapnia.
文摘Investigations about laying hens reactions on artificial light conditions were carried out in a climate chamber equipped with a floor housing system for laying hens. The release of moisture increased during light periods probably due to increased activity which increased respiration rate but also on increased scratching which increased evaporation of moisture from bedding material. The daily average was 6.29 g henl h"l at 4 lux and 5.97 g henl hl, at 93 lux which corresponds to a difference of 5%. The level of light intensity seemed to have little influence on the release of moisture. The total release of heat was slightly higher during light periods compared to dark periods. Explanations can be increased activity but also feed intake increasing the metabolic rate during light periods. The daily average of total heat production was 17.0 W per hen at 4 lux and 14.7 at 93 lux which corresponds to a difference of 16%. The release of carbon dioxide increased during light periods probably due to increased activity and respiration.
文摘The word of “qi” means the air. That is the breathing air exercise of changing air for the body. The oxygen is breathed in and the carbon dioxide is going out. It is including lute style breathing, lower part breathing, skin breathing, acupuncture points breathing, baby breathing, etc. Also, there is breathing in long and out, short, one in and three out, counting number, etc. There are so many different kinds method and the effect or result will be totally different. So, we call it helping-life at ancient. It had a completed human medical theory for fundamental to make the life freedom and living colorful.