考虑到废旧LiCoO_2型锂电池回收过程繁琐、耗能高的问题,以及Ni/Co电池因成本高而无法实用化的现状,采用简易的低温热处理法对LiCoO_2废料进行回收,并将其作为Ni/Co碱性二次电池负极材料进行电化学性能测试.热处理可有效地提高LiCoO_2...考虑到废旧LiCoO_2型锂电池回收过程繁琐、耗能高的问题,以及Ni/Co电池因成本高而无法实用化的现状,采用简易的低温热处理法对LiCoO_2废料进行回收,并将其作为Ni/Co碱性二次电池负极材料进行电化学性能测试.热处理可有效地提高LiCoO_2材料的电化学性能.当放电电流密度为100 m A/g时,回收LiCoO_2材料的最大放电容量为188 m Ah/g.展开更多
Ni(OH)2 including 20%Al was synthesized by solid state reaction. The result of XRD indicated that the sample thus prepared was α Ni(OH)2, and its size and crystalline form were much poorer than those of the sample pr...Ni(OH)2 including 20%Al was synthesized by solid state reaction. The result of XRD indicated that the sample thus prepared was α Ni(OH)2, and its size and crystalline form were much poorer than those of the sample prepared by solution state reaction. TG and DTA curves showed that α Ni(OH)2 began to decompose at higher temperature than β Ni(OH)2. The electrochemical behaviorsof the sample were studied by cyclic voltammetry and constant current charge discharge experiment. It was found that the sample by solid state reaction hadmore excellent electrode reversibility, higher discharge potential and higher discharge capacity.展开更多
文摘考虑到废旧LiCoO_2型锂电池回收过程繁琐、耗能高的问题,以及Ni/Co电池因成本高而无法实用化的现状,采用简易的低温热处理法对LiCoO_2废料进行回收,并将其作为Ni/Co碱性二次电池负极材料进行电化学性能测试.热处理可有效地提高LiCoO_2材料的电化学性能.当放电电流密度为100 m A/g时,回收LiCoO_2材料的最大放电容量为188 m Ah/g.
文摘Ni(OH)2 including 20%Al was synthesized by solid state reaction. The result of XRD indicated that the sample thus prepared was α Ni(OH)2, and its size and crystalline form were much poorer than those of the sample prepared by solution state reaction. TG and DTA curves showed that α Ni(OH)2 began to decompose at higher temperature than β Ni(OH)2. The electrochemical behaviorsof the sample were studied by cyclic voltammetry and constant current charge discharge experiment. It was found that the sample by solid state reaction hadmore excellent electrode reversibility, higher discharge potential and higher discharge capacity.