期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
倒置矩阵和全对称实矩阵的几个性质
1
作者 张新祥 《济宁师范专科学校学报》 1998年第3期7-8,共2页
给出了倒置矩阵和全对称实矩阵的定义,并从它们的结构探讨了它们的性质。
关键词 倒置矩阵 全对称实矩阵 正定矩阵 可逆矩阵
在线阅读 下载PDF
实行(列)对称矩阵的QR分解 被引量:2
2
作者 袁晖坪 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第9期238-240,245,共4页
提出了行(列)倒置矩阵与行(列)对称矩阵的概念,研究了它们的性质,获得了一些新的结果,给出了实行(列)对称矩阵的QR分解的公式,它们可极大地减少行(列)对称矩阵的QR分解的计算量与存储量,而且不会降低数值精度.
关键词 行(列)倒置矩阵 行(列)对称矩阵 QR分解
在线阅读 下载PDF
COMPONENTWISE CONDITION NUMBERS FOR GENERALIZED MATRIX INVERSION AND LINEAR LEAST SQUARES 被引量:1
3
作者 魏益民 许威 +1 位作者 乔三正 刁怀安 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2005年第3期277-286,共10页
We present componentwise condition numbers for the problems of MoorePenrose generalized matrix inversion and linear least squares. Also, the condition numbers for these condition numbers are given.
关键词 矩阵倒置 线性最小正方形 广义性 灵敏度
在线阅读 下载PDF
Gravity compression forward modeling and multiscale inversion based on wavelet transform 被引量:5
4
作者 Sun Si-Yuan Yin Chang-Chun +2 位作者 Gao Xiu-He Liu Yun-He Ren Xiu-Yan 《Applied Geophysics》 SCIE CSCD 2018年第2期342-352,365,共12页
The main problems in three-dimensional gravity inversion are the non-uniqueness of the solutions and the high computational cost of large data sets. To minimize the high computational cost, we propose a new sorting me... The main problems in three-dimensional gravity inversion are the non-uniqueness of the solutions and the high computational cost of large data sets. To minimize the high computational cost, we propose a new sorting method to reduce fluctuations and the high frequency of the sensitivity matrix prior to applying the wavelet transform. Consequently, the sparsity and compression ratio of the sensitivity matrix are improved as well as the accuracy of the forward modeling. Furthermore, memory storage requirements are reduced and the forward modeling is accelerated compared with uncompressed forward modeling. The forward modeling results suggest that the compression ratio of the sensitivity matrix can be more than 300. Furthermore, multiscale inversion based on the wavelet transform is applied to gravity inversion. By decomposing the gravity inversion into subproblems of different scales, the non-uniqueness and stability of the gravity inversion are improved as multiscale data are considered. Finally, we applied conventional focusing inversion and multiscale inversion on simulated and measured data to demonstrate the effectiveness of the proposed gravity inversion method. 展开更多
关键词 Wavelet transform matrix compression multiscale inversion gravity forwardmodeling
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部