期刊导航
期刊开放获取
VIP36
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于HOG和TSO-SVM的水电机组轴心轨迹智能识别
被引量:
1
1
作者
李浩博
李辉
+1 位作者
李华
袁江锋
《大电机技术》
2024年第2期81-87,共7页
水电机组的轴心轨迹能够反映机组不同的运行状态,为了提高轴心轨迹的识别率,准确判断机组运行状态,本文提出方向梯度直方图(Histogram of Oriented Gradient, HOG)结合由瞬态搜索优化(Transient Search Optimization, TSO)算法优化的支...
水电机组的轴心轨迹能够反映机组不同的运行状态,为了提高轴心轨迹的识别率,准确判断机组运行状态,本文提出方向梯度直方图(Histogram of Oriented Gradient, HOG)结合由瞬态搜索优化(Transient Search Optimization, TSO)算法优化的支持向量机(Support Vector Machine, SVM)的方法。将轴心轨迹信号经改进小波阈值方法去噪后,生成轴心轨迹图像,之后提取图像HOG特征,经主成分分析(Principal Components Analysis, PCA)降维处理后,利用TSO-SVM对降维后的特征进行分类识别。结果表明所提方法能够很好地识别不同状态的轴心轨迹,具有识别准确率高和识别速度快的特点。
展开更多
关键词
水电机组
轴心轨迹
小波阈值去噪
HOG特征
支持向量机
瞬态搜索优化算法
在线阅读
下载PDF
职称材料
题名
基于HOG和TSO-SVM的水电机组轴心轨迹智能识别
被引量:
1
1
作者
李浩博
李辉
李华
袁江锋
机构
西安理工大学
国网陕西省电力公司电力科学研究院
华自科技股份有限公司
出处
《大电机技术》
2024年第2期81-87,共7页
文摘
水电机组的轴心轨迹能够反映机组不同的运行状态,为了提高轴心轨迹的识别率,准确判断机组运行状态,本文提出方向梯度直方图(Histogram of Oriented Gradient, HOG)结合由瞬态搜索优化(Transient Search Optimization, TSO)算法优化的支持向量机(Support Vector Machine, SVM)的方法。将轴心轨迹信号经改进小波阈值方法去噪后,生成轴心轨迹图像,之后提取图像HOG特征,经主成分分析(Principal Components Analysis, PCA)降维处理后,利用TSO-SVM对降维后的特征进行分类识别。结果表明所提方法能够很好地识别不同状态的轴心轨迹,具有识别准确率高和识别速度快的特点。
关键词
水电机组
轴心轨迹
小波阈值去噪
HOG特征
支持向量机
瞬态搜索优化算法
Keywords
hydropower unit
shaft orbit
wavelet threshold denoising
HOG features
SVM
TSO algorithm
分类号
TM312 [电气工程—电机]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于HOG和TSO-SVM的水电机组轴心轨迹智能识别
李浩博
李辉
李华
袁江锋
《大电机技术》
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部