期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
化爆材料的瞬态切削温度与切削力在线实时监测 被引量:1
1
作者 孙宝元 曾其勇 +4 位作者 钱敏 徐静 柏平 黄尚诚 刘维 《含能材料》 EI CAS CSCD 2004年第A01期240-243,共4页
针对化爆材料切削特点,首次将薄膜式热电偶引入切削温度测量,研制出一种将切削与测温功能集成于一体的新型薄膜热电偶快速温度传感器。传感器在要求的0~600℃测温范围内具有良好的线性和热稳定性,而且响应快,时间常数小于0.8ms。... 针对化爆材料切削特点,首次将薄膜式热电偶引入切削温度测量,研制出一种将切削与测温功能集成于一体的新型薄膜热电偶快速温度传感器。传感器在要求的0~600℃测温范围内具有良好的线性和热稳定性,而且响应快,时间常数小于0.8ms。该测温传感器与我所自行研制的压电式动态切削测力仪,测试软件一起构成测温、测力在线实时监测系统。本文着重介绍测试系统中温度测量部分。监测系统已安装在中国工程物理研究院并投入使用。取得了很满意的效果。 展开更多
关键词 薄膜热电偶 化爆材料 瞬态切削温度 切削 在线实时监测
在线阅读 下载PDF
瞬态切削用智能测温刀具的研究 被引量:9
2
作者 崔云先 张博文 +2 位作者 丁万昱 阎长罡 刘义 《机械工程学报》 EI CAS CSCD 北大核心 2017年第21期174-180,共7页
针对传统切削温度测量手段无法实时测量刀尖切削区域瞬态温度的技术难题,研制一种基于Ni Cr-Ni Si薄膜热电偶的瞬态切削用智能测温刀具,采用直流脉冲磁控溅射技术制备了致密性和绝缘效果良好的Si O_2绝缘薄膜及热电偶电极薄膜;利用自行... 针对传统切削温度测量手段无法实时测量刀尖切削区域瞬态温度的技术难题,研制一种基于Ni Cr-Ni Si薄膜热电偶的瞬态切削用智能测温刀具,采用直流脉冲磁控溅射技术制备了致密性和绝缘效果良好的Si O_2绝缘薄膜及热电偶电极薄膜;利用自行研制的薄膜热电偶自动标定系统对研制的测温刀片的静、动态技术特性进行测试和分析,结果表明所研制的测温刀片在30~300℃范围内具有良好的线性,其塞贝克系数为40.5μV/K,最大线性误差不超过0.92%,且响应速度快,时间常数为0.083 ms;可嵌入刀杆的温度测试单元实现了在切削加工过程中对瞬态切削温度数据的实时采集、数据存储与无线传输功能;现场试验结果显示,所研制的智能测温刀具可以快速准确监测0.1 s内刀具刀尖处瞬态切削温度的变化,为瞬态切削温度测试提供了新的方法,为智能测温刀具的研究与开发提供了新的技术途径。 展开更多
关键词 薄膜热电偶 瞬态切削温度 磁控溅射 智能刀具
在线阅读 下载PDF
NiCr/NiSi薄膜热电偶传感器的研制及有限元模拟 被引量:6
3
作者 朱亚民 张军 +1 位作者 崔云先 孙奉道 《仪表技术与传感器》 CSCD 北大核心 2008年第9期15-17,共3页
采用磁控溅射法,在刀具材料为W18Cr4V高速钢的后刀面上镀制了NiCr/NiSi薄膜热电偶。传感器既能满足切削要求,同时又能够快速采集温度信号,并对其进行了静态和动态标定,实验范围内线性误差为0.56%,时间常数为12.7 ms,响应迅速,满足实验... 采用磁控溅射法,在刀具材料为W18Cr4V高速钢的后刀面上镀制了NiCr/NiSi薄膜热电偶。传感器既能满足切削要求,同时又能够快速采集温度信号,并对其进行了静态和动态标定,实验范围内线性误差为0.56%,时间常数为12.7 ms,响应迅速,满足实验要求。最后用ANSYS对传感器的瞬态响应和温度场分布进行了有限元仿真,并通过实验进行了验证。 展开更多
关键词 薄膜热电偶 磁控溅射 瞬态切削温度 有限元
在线阅读 下载PDF
Modeling of Transient Thermal Conditions in Cutting
4
作者 T. Augspurger F. Klocke +3 位作者 B. Dobbeler M. Brockmann S. Gierlings A. Lima 《Journal of Mechanics Engineering and Automation》 2017年第3期113-119,共7页
The thermal conditions like the temperature distribution and the heat fluxes during metal cutting have a major influence on the machinability, the tool lifetime, the metallurgical structure and thus the functionality ... The thermal conditions like the temperature distribution and the heat fluxes during metal cutting have a major influence on the machinability, the tool lifetime, the metallurgical structure and thus the functionality of the work piece. This in particular applies for manufacturing processes like milling, drilling and turning for high-value turbomachinery components like impellers, combustion engines and compressors of the aerospace and automotive industry as well as energy generation, which play a major role in modern societies. However, numerous analytical and experimental efforts have been conducted in order to understand the thermal conditions in metal cutting, yet many questions still prevail. Most models are based on a stationary point of view and do not include time dependent effects like in intensity and distribution varying heat sources, varying engagement conditions and progressive tool wear. In order to cover such transient physics an analytical approach based on Green's functions for the solution of the partial differential equations of unsteady heat conduction in solids is used to model entire transient temperature fields. The validation of the model is carried out in orthogonal cutting experiments not only punctually but also for entire temperature fields. For these experiments an integrated measurement of prevailing cutting force and temperature fields in the tool and the chip by means of high-speed thermography were applied. The thermal images were analyzed with regard to thermodynamic energy balancing in order to derive the heat partition between tool, chips and workpiece. The thus calculated heat flow into the tool was subsequently used in order to analytically model the transient volumetric temperature fields in the tool. The described methodology enables the modeling of the transient thermal state in the cutting zone and particular in the tool, which is directly linked to phenomena like tool wear and workpiece surface modifications. 展开更多
关键词 Metal cutting infrared thermography heat sources transient temperature fields model based on Green's functions.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部