期刊导航
期刊开放获取
VIP36
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于模糊邻域熵的离群点检测方法
1
作者
刘佳莉
陈锦坤
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第3期511-522,共12页
离群点检测(又称异常点检测)是数据挖掘领域中一个重要的研究方向,其目的是找出显著区别于其他数据的数据点.针对基于传统粗糙集理论的离群点检测方法存在忽略样本的模糊性和邻域关系等问题,利用模糊邻域粗糙集弥补经典粗糙集的不足,并...
离群点检测(又称异常点检测)是数据挖掘领域中一个重要的研究方向,其目的是找出显著区别于其他数据的数据点.针对基于传统粗糙集理论的离群点检测方法存在忽略样本的模糊性和邻域关系等问题,利用模糊邻域粗糙集弥补经典粗糙集的不足,并结合熵的不确定性,提出一种新的基于模糊邻域熵的离群点检测方法.首先,采用模糊邻域半径和混合模糊相似度构造模糊邻域近似空间;然后,定义一种特定的模糊邻域组合熵和相对模糊邻域组合熵来构建模糊邻域离群度,进而定义基于模糊邻域熵的离群因子实现离群点检测,并设计了基于模糊邻域熵的离群点检测算法(FNEOD).最后,将FNEOD算法与主要的离群点检测算法进行比较.实验结果表明,该方法具有较好的有效性和适应性.
展开更多
关键词
数据挖掘
离群点检测
模糊
邻域
组合
熵
相对模糊邻域组合熵
在线阅读
下载PDF
职称材料
题名
基于模糊邻域熵的离群点检测方法
1
作者
刘佳莉
陈锦坤
机构
闽南师范大学数学与统计学院
闽南师范大学福建省粒计算及其应用重点实验室
出处
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第3期511-522,共12页
基金
国家自然科学基金(62076116,62076088)
福建省自然科学基金(2020J01792,2021J02049)。
文摘
离群点检测(又称异常点检测)是数据挖掘领域中一个重要的研究方向,其目的是找出显著区别于其他数据的数据点.针对基于传统粗糙集理论的离群点检测方法存在忽略样本的模糊性和邻域关系等问题,利用模糊邻域粗糙集弥补经典粗糙集的不足,并结合熵的不确定性,提出一种新的基于模糊邻域熵的离群点检测方法.首先,采用模糊邻域半径和混合模糊相似度构造模糊邻域近似空间;然后,定义一种特定的模糊邻域组合熵和相对模糊邻域组合熵来构建模糊邻域离群度,进而定义基于模糊邻域熵的离群因子实现离群点检测,并设计了基于模糊邻域熵的离群点检测算法(FNEOD).最后,将FNEOD算法与主要的离群点检测算法进行比较.实验结果表明,该方法具有较好的有效性和适应性.
关键词
数据挖掘
离群点检测
模糊
邻域
组合
熵
相对模糊邻域组合熵
Keywords
data mining
outlier detection
fuzzy neighborhood combination entropy
relative fuzzy neighborhood combination entropy
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于模糊邻域熵的离群点检测方法
刘佳莉
陈锦坤
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部