为了解决直推式支持向量机(transductive support vector machines,TSVM)在样本选择自动化程度低和特征学习充分性不足的问题,提出了一种融合深度空间特征与传统影像对象特征的TSVM自动高分遥感影像变化检测方法。首先,采用基于分形网...为了解决直推式支持向量机(transductive support vector machines,TSVM)在样本选择自动化程度低和特征学习充分性不足的问题,提出了一种融合深度空间特征与传统影像对象特征的TSVM自动高分遥感影像变化检测方法。首先,采用基于分形网络演化算法的叠置分割获取多时相高分遥感影像的影像对象,通过卷积神经网络提取遥感影像的深度空间特征,并与灰度、指数和纹理等传统影像对象特征联合构建特征空间;然后,利用卡方变换计算多维特征的加权特征差异度,采用最大期望算法和贝叶斯最小错误判别规则得到二值分割结果,依据变化概率自动将分割结果中准确率较高的部分标记为训练样本;最后,采用标记训练样本获得TSVM的多维特征空间二值分割超平面,进而完成自动变化检测。选择武汉市的两组高分数据集作为实验数据。实验结果表明,该方法能够实现样本自动选择,并且通过融合深度空间特征可以有效提高特征学习的充分性,平均准确率达到了88.84%,平均漏检率较仅利用传统影像对象特征的TSVM法降低了3.29个百分点,在定性和定量的变化检测有效性评价中均得到了提高。展开更多
针对无法直接获取训练样本的遥感影像分类问题,从满足条件的其他影像中选择替代训练样本是最直接的方法,但由于地物类型在不同影像中的辐射环境不同,导致替代训练样本对待分类影像的代表性较差,无法保证分类精度。以直推式支持向量机(tr...针对无法直接获取训练样本的遥感影像分类问题,从满足条件的其他影像中选择替代训练样本是最直接的方法,但由于地物类型在不同影像中的辐射环境不同,导致替代训练样本对待分类影像的代表性较差,无法保证分类精度。以直推式支持向量机(transductive support vector machine,TSVM)分类为例,发展了一种基于半监督学习的遥感影像训练样本时空拓展方法。该方法采用非监督方法从待分类影像中选择大量未标记样本,挖掘各类地物在特征空间中的结构信息;以替代训练样本所拟合的分类面为初始面,通过自适应渐进式的优化,实现对待分类影像的高精度分类。该方法要求训练样本的来源影像与待分类影像具有相似的地物分布和相近的时相。以SPOT5和QuickBird影像分类为例,分别通过基于像元的和基于分割对象的分类实验证实,该文提出的方法可有效地实现训练样本的时空拓展应用。展开更多
文摘为了解决直推式支持向量机(transductive support vector machines,TSVM)在样本选择自动化程度低和特征学习充分性不足的问题,提出了一种融合深度空间特征与传统影像对象特征的TSVM自动高分遥感影像变化检测方法。首先,采用基于分形网络演化算法的叠置分割获取多时相高分遥感影像的影像对象,通过卷积神经网络提取遥感影像的深度空间特征,并与灰度、指数和纹理等传统影像对象特征联合构建特征空间;然后,利用卡方变换计算多维特征的加权特征差异度,采用最大期望算法和贝叶斯最小错误判别规则得到二值分割结果,依据变化概率自动将分割结果中准确率较高的部分标记为训练样本;最后,采用标记训练样本获得TSVM的多维特征空间二值分割超平面,进而完成自动变化检测。选择武汉市的两组高分数据集作为实验数据。实验结果表明,该方法能够实现样本自动选择,并且通过融合深度空间特征可以有效提高特征学习的充分性,平均准确率达到了88.84%,平均漏检率较仅利用传统影像对象特征的TSVM法降低了3.29个百分点,在定性和定量的变化检测有效性评价中均得到了提高。
文摘针对无法直接获取训练样本的遥感影像分类问题,从满足条件的其他影像中选择替代训练样本是最直接的方法,但由于地物类型在不同影像中的辐射环境不同,导致替代训练样本对待分类影像的代表性较差,无法保证分类精度。以直推式支持向量机(transductive support vector machine,TSVM)分类为例,发展了一种基于半监督学习的遥感影像训练样本时空拓展方法。该方法采用非监督方法从待分类影像中选择大量未标记样本,挖掘各类地物在特征空间中的结构信息;以替代训练样本所拟合的分类面为初始面,通过自适应渐进式的优化,实现对待分类影像的高精度分类。该方法要求训练样本的来源影像与待分类影像具有相似的地物分布和相近的时相。以SPOT5和QuickBird影像分类为例,分别通过基于像元的和基于分割对象的分类实验证实,该文提出的方法可有效地实现训练样本的时空拓展应用。