逆向发动机常用于对飞行器进行减速或分离。为研究高空稀薄条件下逆向发动机喷流和自由来流的相互作用,构建了由两个逆向喷流和高超声速自由来流相互干扰形成的稀薄流场。通过直接模拟Monte Carlo(direct simulation Monte Carlo,DSMC)...逆向发动机常用于对飞行器进行减速或分离。为研究高空稀薄条件下逆向发动机喷流和自由来流的相互作用,构建了由两个逆向喷流和高超声速自由来流相互干扰形成的稀薄流场。通过直接模拟Monte Carlo(direct simulation Monte Carlo,DSMC)仿真发现在稀薄来流条件下会形成大面积相互干扰区,且该干扰区存在严重非定常流动现象。初步分析认为,该干扰区的范围和非定常演化过程与自由来流动能和逆向发动机喷流流量紧密相关。展开更多
为了量化高超声速飞行器表面防热瓦缝隙的局部压力和热载荷,采用直接模拟Monte Carlo(direct simulation Monte Carlo,DSMC)方法模拟了稀薄滑移流区的防热瓦缝隙流动,考虑3类缝隙外形,即标准矩形缝隙、前部较浅缝隙和后部较浅缝隙,获得...为了量化高超声速飞行器表面防热瓦缝隙的局部压力和热载荷,采用直接模拟Monte Carlo(direct simulation Monte Carlo,DSMC)方法模拟了稀薄滑移流区的防热瓦缝隙流动,考虑3类缝隙外形,即标准矩形缝隙、前部较浅缝隙和后部较浅缝隙,获得缝隙底部形状变化对缝隙内部流动特征、缝隙表面压力和热环境的影响规律。结果表明:缝隙底部形状的变化几乎不影响缝隙顶部及其附近的流场,包括流线样式、涡核位置、分离/再附处的密度分布,从而对缝隙下游侧面顶部表面压力和热流的影响也可以忽略。然而,相对于标准矩形缝隙,缝隙前部或后部变浅都会导致其底面热流变大,尤其是缝隙后部变浅甚至会使得底面的峰值热流增大近100倍。防热瓦缝隙底面一般直接就是飞行器表面,在航天器防热设计中,应特别注意这类缝隙后部较浅情况下的底面压力和热载荷。展开更多
文摘逆向发动机常用于对飞行器进行减速或分离。为研究高空稀薄条件下逆向发动机喷流和自由来流的相互作用,构建了由两个逆向喷流和高超声速自由来流相互干扰形成的稀薄流场。通过直接模拟Monte Carlo(direct simulation Monte Carlo,DSMC)仿真发现在稀薄来流条件下会形成大面积相互干扰区,且该干扰区存在严重非定常流动现象。初步分析认为,该干扰区的范围和非定常演化过程与自由来流动能和逆向发动机喷流流量紧密相关。
文摘为了量化高超声速飞行器表面防热瓦缝隙的局部压力和热载荷,采用直接模拟Monte Carlo(direct simulation Monte Carlo,DSMC)方法模拟了稀薄滑移流区的防热瓦缝隙流动,考虑3类缝隙外形,即标准矩形缝隙、前部较浅缝隙和后部较浅缝隙,获得缝隙底部形状变化对缝隙内部流动特征、缝隙表面压力和热环境的影响规律。结果表明:缝隙底部形状的变化几乎不影响缝隙顶部及其附近的流场,包括流线样式、涡核位置、分离/再附处的密度分布,从而对缝隙下游侧面顶部表面压力和热流的影响也可以忽略。然而,相对于标准矩形缝隙,缝隙前部或后部变浅都会导致其底面热流变大,尤其是缝隙后部变浅甚至会使得底面的峰值热流增大近100倍。防热瓦缝隙底面一般直接就是飞行器表面,在航天器防热设计中,应特别注意这类缝隙后部较浅情况下的底面压力和热载荷。