Numerical simulation and experiments were introduced to develop AA4045/AA3003 cladding billets with different clad-ratios. The temperature fields, microstructures and mechanical properties near interface were investig...Numerical simulation and experiments were introduced to develop AA4045/AA3003 cladding billets with different clad-ratios. The temperature fields, microstructures and mechanical properties near interface were investigated in detail. The results show that cladding billets with different clad-ratios were fabricated successfully. Si and Mn elements diffused across the bonding interface and formed diffusion layer. With the increase of clad-layer thickness, the interfacial region transforms from semisolid-solid state to liquid-solid state and the diffusion layer increased from 10 to 25 μm. The hardness at interface is higher than that of AA3003 side but lower than that of the other side. The bonding strength increased with the clad-layer thickness, attributing to solution strengthening due to elements diffusion. The cladding billets were extruded into clad pipe by indirect extrusion process after homogenization. The clad pipe remained the interfacial characteristics of as-cast cladding billet and the heredity of clad-ratio during deformation was testified.展开更多
The study of the hydrogen evolution reaction(HER)aimed to reach a deeper understanding of the parameters that control the rate of this reaction is of great importance given the technical relevance of hydrogen producti...The study of the hydrogen evolution reaction(HER)aimed to reach a deeper understanding of the parameters that control the rate of this reaction is of great importance given the technical relevance of hydrogen production as an energy vector in the so-called hydrogen economy.In previous works,laser-induced temperature jump(LITJ)experiments on Pt(111)modified with Ni(OH)_(2)in alkaline media have revealed the importance of the interfacial electric field in the rate of the HER.It was hypothesised that small amounts of Ni(OH)_(2)cause a decrease of the electric field because of a negative shift of the pzfc toward the onset of the hydrogen evolution.In this work,to test the validity of this hypothesis,the study has been extended to Pt(111)surfaces modified with Fe(OH)_(2).The modified surfaces have been studied voltammetrically,and the voltammetric charges have been analysed.The voltammograms show a peak in the hydrogen evolution region that suggest the transformation in the adlayer from Fe(II)to Fe(0).In agreement with the coulometric analysis,the voltammetric features in the OH adsorption region would be related with the oxidation to the+3 valence state.The results obtained with LITJ method reflect the existence of a strong interaction of the Fe oxophilic species with the water molecules,shifting the potential of maximum entropy away from the onset of the HER.Hence,the most catalytic surface is the one with the lowest Fe coverage.展开更多
基金Project(2015B090926013)supported by the Science and Technology Program of Guangdong Province,ChinaProject(20170540307)supported by the Natural Science Foundation of Liaoning Province,China
文摘Numerical simulation and experiments were introduced to develop AA4045/AA3003 cladding billets with different clad-ratios. The temperature fields, microstructures and mechanical properties near interface were investigated in detail. The results show that cladding billets with different clad-ratios were fabricated successfully. Si and Mn elements diffused across the bonding interface and formed diffusion layer. With the increase of clad-layer thickness, the interfacial region transforms from semisolid-solid state to liquid-solid state and the diffusion layer increased from 10 to 25 μm. The hardness at interface is higher than that of AA3003 side but lower than that of the other side. The bonding strength increased with the clad-layer thickness, attributing to solution strengthening due to elements diffusion. The cladding billets were extruded into clad pipe by indirect extrusion process after homogenization. The clad pipe remained the interfacial characteristics of as-cast cladding billet and the heredity of clad-ratio during deformation was testified.
基金funded by Ministerio de Ciencia e Innovación (Spain) (PID2019-105653GB-I00)Generalitat Valenciana (Spain) (PROMETEO/2020/063)。
文摘The study of the hydrogen evolution reaction(HER)aimed to reach a deeper understanding of the parameters that control the rate of this reaction is of great importance given the technical relevance of hydrogen production as an energy vector in the so-called hydrogen economy.In previous works,laser-induced temperature jump(LITJ)experiments on Pt(111)modified with Ni(OH)_(2)in alkaline media have revealed the importance of the interfacial electric field in the rate of the HER.It was hypothesised that small amounts of Ni(OH)_(2)cause a decrease of the electric field because of a negative shift of the pzfc toward the onset of the hydrogen evolution.In this work,to test the validity of this hypothesis,the study has been extended to Pt(111)surfaces modified with Fe(OH)_(2).The modified surfaces have been studied voltammetrically,and the voltammetric charges have been analysed.The voltammograms show a peak in the hydrogen evolution region that suggest the transformation in the adlayer from Fe(II)to Fe(0).In agreement with the coulometric analysis,the voltammetric features in the OH adsorption region would be related with the oxidation to the+3 valence state.The results obtained with LITJ method reflect the existence of a strong interaction of the Fe oxophilic species with the water molecules,shifting the potential of maximum entropy away from the onset of the HER.Hence,the most catalytic surface is the one with the lowest Fe coverage.