期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Ni nanoparticles as electron-transfer mediators and NiS_x as interfacial active sites for coordinative enhancement of H_2-evolution performance of TiO_2 被引量:7
1
作者 Ping Wang Shunqiu Xu +1 位作者 Feng Chen Huogen Yu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第3期343-351,共9页
The development of efficient photocatalytic H2-evolution materials requires both rapid electron transfer and an effective interfacial catalysis reaction for H2 production. In addition to the well-known noble metals, l... The development of efficient photocatalytic H2-evolution materials requires both rapid electron transfer and an effective interfacial catalysis reaction for H2 production. In addition to the well-known noble metals, low-cost and earth-abundant non-noble metals can also act as electron- transfer mediators to modify photocatalysts. However, as almost all non-noble metals lack the interfacial catalytic active sites required for the H2-evolution reaction, the enhancement of the photocatalytic performance is limited. Therefore, the development of new interfacial active sites on metal-modified photocatalysts is of considerable importance. In this study, to enhance the photocatalytic evolution of H2 by Ni-modified TiO2, the formation of NiSx as interfacial active sites was promoted on the surface of Ni nanoparticles. Specifically, the co-modified TiO2/Ni-NiSx photocatalysts were prepared via a two-step process involving the photoinduced deposition of Ni on the TiO2 surface and the subsequent formation of NiSx on the Ni surface by a hydrothermal reaction method. It was found that the TiO2/Ni-NiSx photocatalysts exhibited enhanced photocatalytic H2-evolution activity. In particular, TiO2/Ni-NiSx(30%) showed the highest photocatalytic rate (223.74 μmol h.1), which was greater than those of TiO2, TiO2/Ni, and TiO2/NiSx by factors of 22.2, 8.0, and 2.2, respectively. The improved H2-evolution performance of TiO2/Ni-NiSx could be attributed to the excellent synergistic effect of Ni and NiSx, where Ni nanoparticles function as effective mediators to transfer electrons from the TiO2 surface and NiSx serves as interfacial active sites to capture H+ ions from solution and promote the interfacial H2-evolution reaction. The synergistic effect of the non-noble metal cocatalyst and the interfacial active sites may provide new insights for the design of highly efficient photocatalytic materials. 展开更多
关键词 Titania Electron-transfer mediator Interfacial active site Synergistic effect Photocatalyic H2 evolution
在线阅读 下载PDF
Electronic and geometric structure of the copper-ceria interface on Cu/CeO2 catalysts 被引量:5
2
作者 Yan Zhou Aling Chen +1 位作者 Jing Ning Wenjie Shen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第6期928-937,共10页
The atomic structure of the active sites in Cu/CeO2 catalysts is intimately associated with the copper-ceria interaction. Both the shape of ceria and the loading of copper affect the chemical bonding of copper species... The atomic structure of the active sites in Cu/CeO2 catalysts is intimately associated with the copper-ceria interaction. Both the shape of ceria and the loading of copper affect the chemical bonding of copper species on ceria surfaces and the electronic and geometric character of the relevant interfaces. Nanostructured ceria, including particles(polyhedra), rods, and cubes, provides anchoring sites for the copper species. The atomic arrangements and chemical properties of the(111),(110) and(100) facets, preferentially exposed depending on the shape of ceria, govern the copper-ceria interactions and in turn determine their catalytic properties. Also, the metal loading significantly influences the dispersion of copper species on ceria with a specific shape, forming copper layers, clusters, and nanoparticles. Lower copper contents result in copper monolayers and/or bilayers while higher copper loadings lead to multi-layered clusters and faceted particles. The active sites are usually generated via interactions between the copper atoms in the metal species and the oxygen vacancies on ceria, which is closely linked to the number and density of surface oxygen vacancies dominated by the shape of ceria. 展开更多
关键词 Cu/CeO2 catalyst Ceria shape Oxygen vacancy Copper particle Copper-ceria interface Active site
在线阅读 下载PDF
Selective adsorption of thiocyanate anions on Ag-modified g-C_3N_4 for enhanced photocatalytic hydrogen evolution 被引量:4
3
作者 Feng Chen Hui Yang +2 位作者 Wei Luo Ping Wang Huogen Yu 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第12期1990-1998,共9页
Silver‐modified semiconductor photocatalysts typically exhibit enhanced photocatalytic activitytoward the degradation of organic substances.In comparison,their hydrogen‐evolution rates arerelatively low owing to poo... Silver‐modified semiconductor photocatalysts typically exhibit enhanced photocatalytic activitytoward the degradation of organic substances.In comparison,their hydrogen‐evolution rates arerelatively low owing to poor interfacial catalytic reactions to producing hydrogen.In the presentstudy,thiocyanate anions(SCN–)as interfacial catalytic active sites were selectively adsorbed ontothe Ag surface of g‐C3N4/Ag photocatalyst to promote interfacial H2‐evolution reactions.The thiocyanate‐modified g‐C3N4/Ag(g‐C3N4/Ag‐SCN)photocatalysts were synthesized via photodepositionof metallic Ag on g‐C3N4and subsequent selective adsorption of SCN– ions on the Ag surface by animpregnation method.The resulting g‐C3N4/Ag‐SCN photocatalysts exhibited considerably higherphotocatalytic H2‐evolution activity than the g‐C3N4,g‐C3N4/Ag,and g‐C3N4/SCN photocatalysts.Furthermore,the g‐C3N4/Ag‐SCN photocatalyst displayed the highest H2‐evolution rate(3.9μmolh?1)when the concentration of the SCN– ions was adjusted to0.3mmol L?1.The H2‐evolution rateobtained was higher than those of g‐C3N4(0.15μmol h?1)and g‐C3N4/Ag(0.71μmol h?1).Consideringthe enhanced performance of g‐C3N4/Ag upon minimal addition of SCN– ions,a synergistic effectof metallic Ag and SCN– ions is proposed―the Ag nanoparticles act as an effective electron‐transfermediator for the steady capture and rapid transportation of photogenerated electrons,while theadsorbed SCN– ions serve as an interfacial active site to effectively absorb protons from solution andpromote rapid interfacial H2‐evolution reactions.Considering the present facile synthesis and itshigh efficacy,the present work may provide new insights into preparing high‐performance photocatalytic materials 展开更多
关键词 PHOTOCATALYSIS g‐C3N4/Ag Selective adsorption Interfacial active site Photocatalytic hydrogen evolution
在线阅读 下载PDF
Water oxidation sites located at the interface of Pt/SrTiO_(3) for photocatalytic overall water splitting 被引量:1
4
作者 Xianwen Zhang Zheng Li +4 位作者 Taifeng Liu Mingrun Li Chaobin Zeng Hiroaki Matsumoto Hongxian Han 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第8期2223-2230,共8页
When a proton reduction cocatalyst is loaded on an n-type semiconductor for photocatalytic overall water splitting(POWS),the location of water oxidation sites is generally considered at the surface of the semiconducto... When a proton reduction cocatalyst is loaded on an n-type semiconductor for photocatalytic overall water splitting(POWS),the location of water oxidation sites is generally considered at the surface of the semiconductor due to upward band-bending of n-type semiconductor which may ease the transfer of the photogenerated holes to the surface.However,this is not the case for Pt/SrTiO_(3),a model semiconductor based photocatalyst for POWS.It was found that the photogenerated holes are more readily accumulated at the interface between Pt cocatalyst and SrTiO_(3) photocatalyst as probed by photo-oxidative deposition of PbO_(2),indicating that the water oxidation sites are located at the interface between Pt and SrTiO_(3).Electron paramagnetic resonance and scanning transmission electron microscope studies suggest that the interfacial oxygen atoms between Pt and SrTiO_(3) in Pt/SrTiO_(3) after POWS are more readily lost to form oxygen vacancies upon vacuum heat treatment,regardless of Pt loading by photodeposition or impregnation methods,which may serve as additional support for the location of the active sites for water oxidation at the interface.Density functional theory calculations also suggest that the oxygen evolution reaction more readily occurs at the interfacial sites with the lowest overpotential.These experimental and theoretical studies reveal that the more active sites for water oxidation are located at the interface between Pt and SrTiO_(3),rather than on the surface of SrTiO_(3).Hence,the tailor design and control of the interfacial properties are extremely important for the achievement or improvement of the POWS on cocatalyst loaded semiconductor photocatalyst. 展开更多
关键词 Photocatalytic overall water splitting Active site Oxygen vacancy INTERFACE COCATALYST
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部