Novel SiO2/BiOCl composites were fabricated by decorating BiOCl nanosheets with SiO2 nanoparticles via a simple hydrothermal process. The as-prepared pure BiOCl and SiO2/BiOCl composites were intensively characterized...Novel SiO2/BiOCl composites were fabricated by decorating BiOCl nanosheets with SiO2 nanoparticles via a simple hydrothermal process. The as-prepared pure BiOCl and SiO2/BiOCl composites were intensively characterized by various techniques such as XRD, FT-IR, SEM/TEM, BET, UV-vis, DRS, XPS, and photocurrent measurements. The SiO2/BiOCl composite nanosheets displayed high photocatalytic activity and excellent stability in the degradation of organic pollutants such as phenol, bisphenol A (BPA), and rhodamine B (RhB). With respect to those over bare BiOCl, the degradation rates of RhB, BPA, and phenol over 1.88% SiO2/BiOCl increased 16.5%, 29.0%, and 38.7%, respectively. Radical capturing results suggested that h^+ is the major reactive species and that hydroxyl (·OH) and superoxide (·O2^-) radicals could also be involved in the degradation of organic pollutants. The enhanced photocatalytic performances of SiO2/BiOCl composites can be mainly attributed to the improved texture and the formation of intimate SiO2/BiOCl interfaces, which largely promoted the adsorption of organic pollutants, enhanced the light harvesting, and accelerated the separation of e^– and h^+.展开更多
Based on the laboratory experiments with the saltwater and freshwater replacing each other in the level sand column, taking the kaolin, illite, smectite, bivalent hydrargyrum ion (Hg^2+) and "phenol (C6H5OH) as ...Based on the laboratory experiments with the saltwater and freshwater replacing each other in the level sand column, taking the kaolin, illite, smectite, bivalent hydrargyrum ion (Hg^2+) and "phenol (C6H5OH) as examples, this paper studies the applications of water sensitivity in situ remediation in saltwater-freshwater transition zone. In the water sensitivity process, the release and migration of clay minerals can make the hydraulic conductivity (HC) decrease and pollutants remove. A new type of low penetrable or impenetrable purdah can be built by adding clay minerals into the sand media to replace the underground concrete impenetrable wall to prevent seawater intrusion, and a number of the heavy metals and organic pollutants in the sand media can be removed by in situ remediation. The results show that the content of kaolin and illite influences the water sensitivity process slightly, and HC of the sand columns descends from 0.011 cm/s to 0.001 4 cm/s and 0.001 2 cm/s respectively even if the content reaches 12% (weight ratio, sic passim). However, for smectite, HC descends sharply to about 1 × 10^-8 cm/s when its content reaches 4%, and no water can flow through the sand columns beyond 5%. The particle release and migration processes can remove the Hg^2+ and C6HsOH out of the sand columns efficiently, the removing rate of Hg^2+ is 31.68% when the freshwater and saltwater are filtered through the sand columns polluted by Hg^2+, while it is 67.55% when the water sensitivity occurs. With the same method, the removing rates of C6H5OH under the fluid flow and water sensitivity are 55.71% and 43.43% respectively.展开更多
Sediments in many rivers and lakes are subjected to resuspension due to a combination of hydrodynamics. However, the roles of contaminant-contained dissolved and particulate sediments during the resuspension release a...Sediments in many rivers and lakes are subjected to resuspension due to a combination of hydrodynamics. However, the roles of contaminant-contained dissolved and particulate sediments during the resuspension release are rarely studied. This study focuses on the release quantity of contaminants in both water phase and solid phase. Conservative tracer (NaC1) and reactive tracer (Phosphorus) were respectively added to cohesive fine-grained sediments and non-cohesive coarse-grained sediments. A range of typical shear stress was conducted to characterize the time-depended release of contaminants in a laboratory flume. When the sediment started to move, the concentration of contaminant in the overlying water increased with the bed shear stress, but the dissolved contaminants responded faster than the particulate ones. The observed contaminant release process can be divided into three main stages: the initial two hours fast mixing: the release contribution of pore water could reach up to 75%; the middle 4-6 h adsorption: the partitioning coefficient of contaminant between water phase and solid phase decreased over the time, and the adsorption of contaminates from resuspended sediment dominated the negative release; the last equilibrium stage: the desorption and adsorption reached equilibrium, and the reactive contaminant made an impact on the water quality in the solid phase. The existing formulas to evaluate the release flux are far from practice meaning as the sediment contaminants undergo a very complex release process.展开更多
基金funding from the National Natural Science Foundation of China (21567008, 21707055)the Program for Innovative Research Team of Guangdong University of Petrochemical Technology+4 种基金the Yangfan talents Project of Guangdong Provincethe Innovation-driven “5511” Program in Jiangxi Province (20165BCB18014)the Funding Program for Academic and Technological Leaders of Major Disciplines in Jiangxi Province (20172BCB22018)the Program for New Century Excellent Talents in Fujian Province Universitythe Natural Science Foundation for Distinguished Young Scholars of Hunan Province, China (2017JJ1026)~~
文摘Novel SiO2/BiOCl composites were fabricated by decorating BiOCl nanosheets with SiO2 nanoparticles via a simple hydrothermal process. The as-prepared pure BiOCl and SiO2/BiOCl composites were intensively characterized by various techniques such as XRD, FT-IR, SEM/TEM, BET, UV-vis, DRS, XPS, and photocurrent measurements. The SiO2/BiOCl composite nanosheets displayed high photocatalytic activity and excellent stability in the degradation of organic pollutants such as phenol, bisphenol A (BPA), and rhodamine B (RhB). With respect to those over bare BiOCl, the degradation rates of RhB, BPA, and phenol over 1.88% SiO2/BiOCl increased 16.5%, 29.0%, and 38.7%, respectively. Radical capturing results suggested that h^+ is the major reactive species and that hydroxyl (·OH) and superoxide (·O2^-) radicals could also be involved in the degradation of organic pollutants. The enhanced photocatalytic performances of SiO2/BiOCl composites can be mainly attributed to the improved texture and the formation of intimate SiO2/BiOCl interfaces, which largely promoted the adsorption of organic pollutants, enhanced the light harvesting, and accelerated the separation of e^– and h^+.
基金Supported by National Natural Science Foundation of China (No.40572142)
文摘Based on the laboratory experiments with the saltwater and freshwater replacing each other in the level sand column, taking the kaolin, illite, smectite, bivalent hydrargyrum ion (Hg^2+) and "phenol (C6H5OH) as examples, this paper studies the applications of water sensitivity in situ remediation in saltwater-freshwater transition zone. In the water sensitivity process, the release and migration of clay minerals can make the hydraulic conductivity (HC) decrease and pollutants remove. A new type of low penetrable or impenetrable purdah can be built by adding clay minerals into the sand media to replace the underground concrete impenetrable wall to prevent seawater intrusion, and a number of the heavy metals and organic pollutants in the sand media can be removed by in situ remediation. The results show that the content of kaolin and illite influences the water sensitivity process slightly, and HC of the sand columns descends from 0.011 cm/s to 0.001 4 cm/s and 0.001 2 cm/s respectively even if the content reaches 12% (weight ratio, sic passim). However, for smectite, HC descends sharply to about 1 × 10^-8 cm/s when its content reaches 4%, and no water can flow through the sand columns beyond 5%. The particle release and migration processes can remove the Hg^2+ and C6HsOH out of the sand columns efficiently, the removing rate of Hg^2+ is 31.68% when the freshwater and saltwater are filtered through the sand columns polluted by Hg^2+, while it is 67.55% when the water sensitivity occurs. With the same method, the removing rates of C6H5OH under the fluid flow and water sensitivity are 55.71% and 43.43% respectively.
基金supported by the National Natural Science Foundation of China(Grant No.10972134)the State Key Program of National Natural Science of China(Grant No.11032007)
文摘Sediments in many rivers and lakes are subjected to resuspension due to a combination of hydrodynamics. However, the roles of contaminant-contained dissolved and particulate sediments during the resuspension release are rarely studied. This study focuses on the release quantity of contaminants in both water phase and solid phase. Conservative tracer (NaC1) and reactive tracer (Phosphorus) were respectively added to cohesive fine-grained sediments and non-cohesive coarse-grained sediments. A range of typical shear stress was conducted to characterize the time-depended release of contaminants in a laboratory flume. When the sediment started to move, the concentration of contaminant in the overlying water increased with the bed shear stress, but the dissolved contaminants responded faster than the particulate ones. The observed contaminant release process can be divided into three main stages: the initial two hours fast mixing: the release contribution of pore water could reach up to 75%; the middle 4-6 h adsorption: the partitioning coefficient of contaminant between water phase and solid phase decreased over the time, and the adsorption of contaminates from resuspended sediment dominated the negative release; the last equilibrium stage: the desorption and adsorption reached equilibrium, and the reactive contaminant made an impact on the water quality in the solid phase. The existing formulas to evaluate the release flux are far from practice meaning as the sediment contaminants undergo a very complex release process.