A complementary metal-oxide-semiconductor transistor (CMOS) voltage-to-current(VTC)converter with high linearity for current-mode analog and digital integrated circuits is described. A high gain operational amplif...A complementary metal-oxide-semiconductor transistor (CMOS) voltage-to-current(VTC)converter with high linearity for current-mode analog and digital integrated circuits is described. A high gain operational amplifier (OPA) is utilized to form negative feedback. A proportional to absolute temperature (PTAT) current reference with transistors operated in a weak inversion is used as the bias circuit. The resistor and the OPA nonlinearity behavior are analyzed in detail. By optimizing parameters in OPA and adopting a small voltage coefficient polysilicon resistor as a linear device, a high linearity is achieved. The circuit is implemented in a standard 0. 6 μm CMOS technology. The low frequency gain of the OPA exceeds 90 dB. The test results indicate that the total harmonic distortion (THD)is 0. 000 2%. The common-mode input linearity range is 0 to 2. 6 V. Correspondingly, the output current range is 50 to 426μA. The sensitivity of the PTAT current reference to Vdd is approximately 0. 021 7. The chip consumes a power of less than 1.3 mW for a 5 V supply, and occupies an area of 0. 112 mm^2.展开更多
An automated multi-range multipliers(range resistors)system is established for the AC voltage measurements by using a thermal voltage converter.It is performed automatically by selecting the appropriate multiplier w...An automated multi-range multipliers(range resistors)system is established for the AC voltage measurements by using a thermal voltage converter.It is performed automatically by selecting the appropriate multiplier whose voltage range contains the voltage to be measured without changing it manually through a new designed system.It consists of control part through a micro-controller controlled by specified prepared Lab-VIEW program and switching part through electronic relays in one circuit as clearly described in this work.It is used for measuring the ac voltage in the range from 1 V to 200 V.Also,it can be used for the voltage ranges up to 1 000 V by putting some factors into consideration.The AC-DC transfer differences for these multipliers combined with thermal voltage converter are determined automatically against another standard thermal voltage converter by using another Lab-VIEW program.展开更多
The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the ...The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the dependence on the external components and device variation and make smooth transition between hysteresis control loop and pulse width modulation(PWM)control loop.The small signal model was deduced for the buck and boost operation mode.The inductor current slope control(ICSC)was proposed to implement the automatic mode transition between buck and boost mode in one switching cycle.The results show that the converter prototype has good dynamic response capability,achieving 94%efficiency and 95%peak efficiency at full 10 A load current.展开更多
In a smart grid, electric loads are supplied by various DC (direct current) power sources, such as solar cells or batteries. On the other hand, traditional AC (alternating current) loads like a directly connected ...In a smart grid, electric loads are supplied by various DC (direct current) power sources, such as solar cells or batteries. On the other hand, traditional AC (alternating current) loads like a directly connected induction motors will also be used. In the circumstances, a smart power conversion unit is one of key components, which can integrate these DC or AC apparatus and trade power among them. Authors have developed an integrated power converter based on a well-known circuit topology of flying capacitor multilevel converter. This paper describes the detail of the circuit topology and its characteristics depending on designed parameters. The achieved power quality is also verified by simulation study.展开更多
The unbalanced voltages cause negative effects on the doubly fed induction generator (DFIG) sucn as torque pulsation,and increased stator current. Based on the symmetrical component theory, the torque pulsation is t...The unbalanced voltages cause negative effects on the doubly fed induction generator (DFIG) sucn as torque pulsation,and increased stator current. Based on the symmetrical component theory, the torque pulsation is the consequence of the interaction of stator and rotor currents of different sequences. This paper presents a control technique to reduce the effect of unbalanced voltages on the DFIG in wind energy conversion systems. The negative sequence stator voltage is derived from the unbalanced three phase stator voltages. The compensated rotor voltage in terms of the derived negative sequence stator voltage and slip which minimizes the negative stator and rotor currents is proposed. The results from the simulation of control system with steady state model and dynamic model of the DFIG show that additional control loop with compensated voltage can significantly reduce torque and reactive power pulsations.展开更多
Ternary strategy has been considered as an efficient method to achieve high performance polymer solar cells(PSCs). A power conversion efficiency(PCE) of 17.22% is achieved in the optimized ternary PSCs with10 wt% MF1 ...Ternary strategy has been considered as an efficient method to achieve high performance polymer solar cells(PSCs). A power conversion efficiency(PCE) of 17.22% is achieved in the optimized ternary PSCs with10 wt% MF1 in acceptors. The over 8% PCE improvement by employing ternary strategy is attributed to the simultaneously increased JSCof 25.68 mA cm^-2, VOCof 0.853 V and FF of 78.61% compared with Y6 based binary PSCs. The good compatibility of MF1 and Y6 can be confirmed from Raman mapping, contact angle,cyclic voltammetry and morphology, which is the prerequisite to form alloy-like state. Electron mobility in ternary active layers strongly depends on MF1 content in acceptors due to the different lowest unoccupied molecular orbital(LUMO) levels of Y6 and MF1, which can well explain the wave-like varied FF of ternary PSCs. The third-party certified PCE of 16.8% should be one of the highest values for single bulk heterojunction PSCs. This work provides sufficient references for selecting materials to achieve efficient ternary PSCs.展开更多
文摘为了进一步提高电学层析成像(ECT)采集系统的测量精度,分析研究了ECT信号的完整性对测量结果的影响。针对测量电容信号微弱、值在p F级别的特点,设计出一种考虑信号完整性的ECT采集系统,其传感器占空比为81%。利用上述系统来分析信号完整性对测量结果的影响。实验结果表明:当正弦激励信号的峰峰值为18.7 V时,采集到的最大信号经过电流/电压(C/V)转换后的电压峰峰值为921 m V,与理论计算结果基本吻合;运用灵敏度矩阵系数算法,在PC上得出了清晰的ECT图像。表明该测量系统满足精度要求。
文摘A complementary metal-oxide-semiconductor transistor (CMOS) voltage-to-current(VTC)converter with high linearity for current-mode analog and digital integrated circuits is described. A high gain operational amplifier (OPA) is utilized to form negative feedback. A proportional to absolute temperature (PTAT) current reference with transistors operated in a weak inversion is used as the bias circuit. The resistor and the OPA nonlinearity behavior are analyzed in detail. By optimizing parameters in OPA and adopting a small voltage coefficient polysilicon resistor as a linear device, a high linearity is achieved. The circuit is implemented in a standard 0. 6 μm CMOS technology. The low frequency gain of the OPA exceeds 90 dB. The test results indicate that the total harmonic distortion (THD)is 0. 000 2%. The common-mode input linearity range is 0 to 2. 6 V. Correspondingly, the output current range is 50 to 426μA. The sensitivity of the PTAT current reference to Vdd is approximately 0. 021 7. The chip consumes a power of less than 1.3 mW for a 5 V supply, and occupies an area of 0. 112 mm^2.
文摘An automated multi-range multipliers(range resistors)system is established for the AC voltage measurements by using a thermal voltage converter.It is performed automatically by selecting the appropriate multiplier whose voltage range contains the voltage to be measured without changing it manually through a new designed system.It consists of control part through a micro-controller controlled by specified prepared Lab-VIEW program and switching part through electronic relays in one circuit as clearly described in this work.It is used for measuring the ac voltage in the range from 1 V to 200 V.Also,it can be used for the voltage ranges up to 1 000 V by putting some factors into consideration.The AC-DC transfer differences for these multipliers combined with thermal voltage converter are determined automatically against another standard thermal voltage converter by using another Lab-VIEW program.
文摘The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the dependence on the external components and device variation and make smooth transition between hysteresis control loop and pulse width modulation(PWM)control loop.The small signal model was deduced for the buck and boost operation mode.The inductor current slope control(ICSC)was proposed to implement the automatic mode transition between buck and boost mode in one switching cycle.The results show that the converter prototype has good dynamic response capability,achieving 94%efficiency and 95%peak efficiency at full 10 A load current.
文摘In a smart grid, electric loads are supplied by various DC (direct current) power sources, such as solar cells or batteries. On the other hand, traditional AC (alternating current) loads like a directly connected induction motors will also be used. In the circumstances, a smart power conversion unit is one of key components, which can integrate these DC or AC apparatus and trade power among them. Authors have developed an integrated power converter based on a well-known circuit topology of flying capacitor multilevel converter. This paper describes the detail of the circuit topology and its characteristics depending on designed parameters. The achieved power quality is also verified by simulation study.
文摘The unbalanced voltages cause negative effects on the doubly fed induction generator (DFIG) sucn as torque pulsation,and increased stator current. Based on the symmetrical component theory, the torque pulsation is the consequence of the interaction of stator and rotor currents of different sequences. This paper presents a control technique to reduce the effect of unbalanced voltages on the DFIG in wind energy conversion systems. The negative sequence stator voltage is derived from the unbalanced three phase stator voltages. The compensated rotor voltage in terms of the derived negative sequence stator voltage and slip which minimizes the negative stator and rotor currents is proposed. The results from the simulation of control system with steady state model and dynamic model of the DFIG show that additional control loop with compensated voltage can significantly reduce torque and reactive power pulsations.
基金This work was supported by the National Natural Science Foundation of China(61805009,61675017,61975006)China Postdoctoral Science Foundation(2018M641170)+1 种基金Beijing Natural Science Foundation(4192049)The authors gratefully acknowledge the assistance of the Shanghai Synchrotron Radiation Facility(beamline BL16B1)for GWAIXS and GISAXS measurements.
文摘Ternary strategy has been considered as an efficient method to achieve high performance polymer solar cells(PSCs). A power conversion efficiency(PCE) of 17.22% is achieved in the optimized ternary PSCs with10 wt% MF1 in acceptors. The over 8% PCE improvement by employing ternary strategy is attributed to the simultaneously increased JSCof 25.68 mA cm^-2, VOCof 0.853 V and FF of 78.61% compared with Y6 based binary PSCs. The good compatibility of MF1 and Y6 can be confirmed from Raman mapping, contact angle,cyclic voltammetry and morphology, which is the prerequisite to form alloy-like state. Electron mobility in ternary active layers strongly depends on MF1 content in acceptors due to the different lowest unoccupied molecular orbital(LUMO) levels of Y6 and MF1, which can well explain the wave-like varied FF of ternary PSCs. The third-party certified PCE of 16.8% should be one of the highest values for single bulk heterojunction PSCs. This work provides sufficient references for selecting materials to achieve efficient ternary PSCs.