The LiMoS: anode material for lithium ion rechargeable batteries were synthesized by a hydrothermal method at 150 ℃. According to our measurements with X-ray diffraction, LiMoS2 was amorphous structure. Electrochemi...The LiMoS: anode material for lithium ion rechargeable batteries were synthesized by a hydrothermal method at 150 ℃. According to our measurements with X-ray diffraction, LiMoS2 was amorphous structure. Electrochemical measurements results showed that LiMoS2 exhibited large lithium storage capacities.展开更多
In order to develop an excellent pseudocapacitor with both high specific capacitance and outstanding stretchability to match with other devices applicable in future wearable and bio-implantable systems, we focus our s...In order to develop an excellent pseudocapacitor with both high specific capacitance and outstanding stretchability to match with other devices applicable in future wearable and bio-implantable systems, we focus our studies on three vital aspects: Stretchability of hybrid film electrodes, the interface between different components, and the integrated performance in stretchability and electrochemistry of supercapacitors based on single-walled carbon nanotube/ polyaniline (SWCNT/PANI) composite films on pre-elongated elastomers. Owing to the moderate porosity, the buckled hybrid film avoids the cracking which occurs in conventional stretchable hybrid electrodes, and both a high specific capacitance of 435 F.g-1 and a high strain tolerance of 140% have been achieved. The good SWCNT/PANI interfacial coupling and the reinforced solid electrolyte penetration structure enable the integrated pseudocapacitors to have stretch- resistant interfaces between different units and maintain a high performance under a stretching of 120% elongation, even after 1,000 cyclic elongations.展开更多
The charging kinetics of electric double layers (EDLs) is closely related to the performance of a wide variety of nanostructured devices including supercapacitors, electro-actuators, and electrolyte-gated transistor...The charging kinetics of electric double layers (EDLs) is closely related to the performance of a wide variety of nanostructured devices including supercapacitors, electro-actuators, and electrolyte-gated transistors. While room temperature ionic liquids (RTIL) are often used as the charge carrier in these new applications, the theoretical analyses are mostly based on conventional electrokinetic theories suitable for macroscopic electrochemical phenomena in aqueous solutions. In this work, we study the charging behavior of RTIL-EDLs using a coarse-grained molecular model and constant-potential molecular dynamics (MD) simulations. In stark contrast to the predictions of conventional theories, the MD results show oscillatory variations of ionic distributions and electrochemical properties in response to the separation between electrodes. The rate of EDL charging exhibits non-monotonic behavior revealing strong electrostatic correlations in RTIL under confinement.展开更多
The heat capacity and the electric capacitance of the black p-branes(BPB) are generally defined,then they are calculated for some special processes.It is found that the Ruppeiner thermodynamic geometry of BPB is flat....The heat capacity and the electric capacitance of the black p-branes(BPB) are generally defined,then they are calculated for some special processes.It is found that the Ruppeiner thermodynamic geometry of BPB is flat.Finally,we give some discussions for the flatness of the Ruppeiner thermodynamic geometry of BPB and some black holes.展开更多
文摘The LiMoS: anode material for lithium ion rechargeable batteries were synthesized by a hydrothermal method at 150 ℃. According to our measurements with X-ray diffraction, LiMoS2 was amorphous structure. Electrochemical measurements results showed that LiMoS2 exhibited large lithium storage capacities.
文摘In order to develop an excellent pseudocapacitor with both high specific capacitance and outstanding stretchability to match with other devices applicable in future wearable and bio-implantable systems, we focus our studies on three vital aspects: Stretchability of hybrid film electrodes, the interface between different components, and the integrated performance in stretchability and electrochemistry of supercapacitors based on single-walled carbon nanotube/ polyaniline (SWCNT/PANI) composite films on pre-elongated elastomers. Owing to the moderate porosity, the buckled hybrid film avoids the cracking which occurs in conventional stretchable hybrid electrodes, and both a high specific capacitance of 435 F.g-1 and a high strain tolerance of 140% have been achieved. The good SWCNT/PANI interfacial coupling and the reinforced solid electrolyte penetration structure enable the integrated pseudocapacitors to have stretch- resistant interfaces between different units and maintain a high performance under a stretching of 120% elongation, even after 1,000 cyclic elongations.
基金This work was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences. K. X. is grateful to the Chinese Scholarship Council for a visiting fellowship. Additional support was provided by National Natural Science foundation of China (No. 21276138) and Tsinghua University Foundation (No. 2013108930). The numerical calculations were performed at the National Energy Research Sdentific Computing Center (NERSC).
文摘The charging kinetics of electric double layers (EDLs) is closely related to the performance of a wide variety of nanostructured devices including supercapacitors, electro-actuators, and electrolyte-gated transistors. While room temperature ionic liquids (RTIL) are often used as the charge carrier in these new applications, the theoretical analyses are mostly based on conventional electrokinetic theories suitable for macroscopic electrochemical phenomena in aqueous solutions. In this work, we study the charging behavior of RTIL-EDLs using a coarse-grained molecular model and constant-potential molecular dynamics (MD) simulations. In stark contrast to the predictions of conventional theories, the MD results show oscillatory variations of ionic distributions and electrochemical properties in response to the separation between electrodes. The rate of EDL charging exhibits non-monotonic behavior revealing strong electrostatic correlations in RTIL under confinement.
基金Supported by National Natural Science Foundation of China under Grant No.201210782
文摘The heat capacity and the electric capacitance of the black p-branes(BPB) are generally defined,then they are calculated for some special processes.It is found that the Ruppeiner thermodynamic geometry of BPB is flat.Finally,we give some discussions for the flatness of the Ruppeiner thermodynamic geometry of BPB and some black holes.