体电子显微成像技术(volume electron microscopy)可以在更大三维空间中对样品进行纳米分辨率三维结构分析,获取样品内部结构的三维模型和各结构之间的位置关系、体积比例等信息,更加全面地反映样品的超微结构与功能的关系。本文利用基...体电子显微成像技术(volume electron microscopy)可以在更大三维空间中对样品进行纳米分辨率三维结构分析,获取样品内部结构的三维模型和各结构之间的位置关系、体积比例等信息,更加全面地反映样品的超微结构与功能的关系。本文利用基于聚焦离子束扫描电镜的体电子显微成像技术对人源肝癌细胞的三维超微结构进行分析,获得了多种细胞器包括细胞核、线粒体、内质网和高尔基体等的高分辨率三维结构模型。展开更多
基于电子显微学的原子级三维重构技术对揭示材料的微观结构,加深材料结构和性能关系的理解具有极为重要的意义。原子级电子断层成像技术(atomic electron tomography,AET)作为当前最先进的三维重构技术之一,已先后成功表征了纳米颗粒中...基于电子显微学的原子级三维重构技术对揭示材料的微观结构,加深材料结构和性能关系的理解具有极为重要的意义。原子级电子断层成像技术(atomic electron tomography,AET)作为当前最先进的三维重构技术之一,已先后成功表征了纳米颗粒中原子位置、晶体缺陷、早期形核过程中原子的动态变化及非晶态固体的三维原子结构。本文综述了AET的流程及应用的突破,以期望读者了解AET的基本原理流程和应用,并探讨未来AET在解决物理、化学、材料科学等领域基础问题的前景与挑战。展开更多
电子显微成像技术的快速发展使得对完整细胞、组织乃至整个机体进行高分辨三维结构解析研究成为可能,这些可进行大尺度生物样品三维结构研究的电子显微成像技术统称为体电子显微学技术(volume electron microscopy,vEM)。近年来,v EM在...电子显微成像技术的快速发展使得对完整细胞、组织乃至整个机体进行高分辨三维结构解析研究成为可能,这些可进行大尺度生物样品三维结构研究的电子显微成像技术统称为体电子显微学技术(volume electron microscopy,vEM)。近年来,v EM在研究尺度、分辨率、吞吐量和易用性等方面发展迅速,在整个生命科学领域的应用呈爆炸式增长,该技术因此被《自然》(Nature)评为2023年最值得关注的七项前沿技术之一。然而,vEM相关技术的发展和应用在国内起步较晚,亟待进一步推广。本综述涵盖了vEM的发展历程、技术分类、样品制备、数据收集、图像处理等全方位的内容,便于生命科学、医学等领域研究人员去了解、学习、应用和进一步发展该技术。展开更多
原子级分辨率的成像表征对探究材料结构与性质间的联系具有重大意义。应用像差校正的高分辨电子显微成像技术(high⁃resolution transmission electron microscopy,HRTEM)可以实现亚埃尺度分辨率的图像表征,但电子束辐照敏感材料受限于...原子级分辨率的成像表征对探究材料结构与性质间的联系具有重大意义。应用像差校正的高分辨电子显微成像技术(high⁃resolution transmission electron microscopy,HRTEM)可以实现亚埃尺度分辨率的图像表征,但电子束辐照敏感材料受限于辐照引起的结构损伤,无法用常规辐照剂量进行HRTEM成像表征。将出射波重构(exit wave reconstruction,EWR)技术应用于辐照敏感材料,一方面可以解决HRTEM图像中衬度反转的问题并提高图像分辨率至信息极限;另一方面,通过算法实现对信息的充分利用,适合于从低剂量数据中提取有效信息。采用低剂量EWR技术可以实现电子束敏感材料的原子级分辨率图像,为研究电子束辐照敏感材料提供更多可能性,也使针对出射波重构技术的研究具有更大的应用前景与科学意义。展开更多
文摘体电子显微成像技术(volume electron microscopy)可以在更大三维空间中对样品进行纳米分辨率三维结构分析,获取样品内部结构的三维模型和各结构之间的位置关系、体积比例等信息,更加全面地反映样品的超微结构与功能的关系。本文利用基于聚焦离子束扫描电镜的体电子显微成像技术对人源肝癌细胞的三维超微结构进行分析,获得了多种细胞器包括细胞核、线粒体、内质网和高尔基体等的高分辨率三维结构模型。
文摘基于电子显微学的原子级三维重构技术对揭示材料的微观结构,加深材料结构和性能关系的理解具有极为重要的意义。原子级电子断层成像技术(atomic electron tomography,AET)作为当前最先进的三维重构技术之一,已先后成功表征了纳米颗粒中原子位置、晶体缺陷、早期形核过程中原子的动态变化及非晶态固体的三维原子结构。本文综述了AET的流程及应用的突破,以期望读者了解AET的基本原理流程和应用,并探讨未来AET在解决物理、化学、材料科学等领域基础问题的前景与挑战。
文摘电子显微成像技术的快速发展使得对完整细胞、组织乃至整个机体进行高分辨三维结构解析研究成为可能,这些可进行大尺度生物样品三维结构研究的电子显微成像技术统称为体电子显微学技术(volume electron microscopy,vEM)。近年来,v EM在研究尺度、分辨率、吞吐量和易用性等方面发展迅速,在整个生命科学领域的应用呈爆炸式增长,该技术因此被《自然》(Nature)评为2023年最值得关注的七项前沿技术之一。然而,vEM相关技术的发展和应用在国内起步较晚,亟待进一步推广。本综述涵盖了vEM的发展历程、技术分类、样品制备、数据收集、图像处理等全方位的内容,便于生命科学、医学等领域研究人员去了解、学习、应用和进一步发展该技术。