A thoroughly mechanistic understanding of the electrochemical CO reduction reaction(eCORR)at the interface is significant for guiding the design of high-performance electrocatalysts.However,unintentionally ignored fac...A thoroughly mechanistic understanding of the electrochemical CO reduction reaction(eCORR)at the interface is significant for guiding the design of high-performance electrocatalysts.However,unintentionally ignored factors or unreasonable settings during mechanism simulations will result in false positive results between theory and experiment.Herein,we computationally identified the dynamic site preference change of CO adsorption with potentials on Cu(100),which was a previously unnoticed factor but significant to potential-dependent mechanistic studies.Combined with the different lateral interactions among adsorbates,we proposed a new C–C coupling mechanism on Cu(100),better explaining the product distribution at different potentials in experimental eCORR.At low potentials(from–0.4 to–0.6 V_(RHE)),the CO forms dominant adsorption on the bridge site,which couples with another attractively aggregated CO to form a C–C bond.At medium potentials(from–0.6 to–0.8 VRHE),the hollow-bound CO becomes dominant but tends to isolate with another adsorbate due to the repulsion,thereby blocking the coupling process.At high potentials(above–0.8 VRHE),the CHO intermediate is produced from the electroreduction of hollow-CO and favors the attraction with another bridge-CO to trigger C–C coupling,making CHO the major common intermediate for C–C bond formation and methane production.We anticipate that our computationally identified dynamic change in site preference of adsorbates with potentials will bring new opportunities for a better understanding of the potential-dependent electrochemical processes.展开更多
The electrocatalytic synthesis of imines through the reductive imination of nitroarenes with aldehydes is a facile,environmentally friendly,and valuable process.In this study,high selectivity electrosynthesis of imine...The electrocatalytic synthesis of imines through the reductive imination of nitroarenes with aldehydes is a facile,environmentally friendly,and valuable process.In this study,high selectivity electrosynthesis of imines was realized through the electrocatalytic C-N coupling reaction between nitroarenes and aryl aldehydes on Co_(9)S_(8)nanoflowers with rich sulfur vacancies(Co_(9)S_(8)-Vs).Comparative experiments revealed that positively charged sulfur vacancies play a pivotal role in boosting catalytic selectivity towards imines.Electron-deficient sulfur vacancies intensified the adsorption of negatively charged Ph-NO_(2),thereby enhancing the conversion rate of the electrochemical nitrobenzene-reduction reaction(eNB-RR).Simultaneously,sulfur vacancies augmented the adsorption capability of negatively charged Ph-CHO,enriching Ph-CHO species at the electrode interface and expediting the Schiff base condensation reaction rate.The experimental results show that the reaction conditions can satisfy the different nitroarenes and aryl aldehydes in the electrocatalytic aqueous-phase system under mild conditions to obtain the corresponding imine products in high selectivity.This study provides a facile and environmentally friendly pathway for future electrocatalytic synthesis of imine.展开更多
Carbon dioxide is a cheap, abundant and renewable C1 building block. Over the last two decades, considerable re- search efforts have been devoted to developing new reactions for the efficient incorporation of carbon d...Carbon dioxide is a cheap, abundant and renewable C1 building block. Over the last two decades, considerable re- search efforts have been devoted to developing new reactions for the efficient incorporation of carbon dioxide into a broad range of compounds for the production of value-added materi- als [1]. Notably, these efforts have culminated in the develop- ment of several transition-metal-catalyzed methods capable of providing access to numerous synthetically important carbox- ylic acids and derivatives using carbon dioxide as a carboxyla- tive reagent [2].展开更多
Combining microwave radiation with photocatalytic systems is a promising method to inhibit photogenerated electron-hole recombination and enhance the photocatalytic reaction performance. In this study, we have designe...Combining microwave radiation with photocatalytic systems is a promising method to inhibit photogenerated electron-hole recombination and enhance the photocatalytic reaction performance. In this study, we have designed Pd/Pb TiO3 catalysts that can use both microwave fields and photocatalysis. Benefiting from the synergistic effect of microwave field and UV light, the Pb TiO3 crystals convert thermal energy into electrical energy via the pyroelectricity effect, generating positive and negative charges(q+ and q-), while Pd nanoparticles significantly improve the quantum efficiency of the photocatalytic process. The composite catalyst significantly enhances the reaction rate and selectivity of the model Suzuki coupling reaction performed with bromobenzene. Microwave fields can directly act on chemical systems, promoting or changing various chemical reactions in unique ways.展开更多
Cu-based catalysts are the most promising candidates for electrochemical CO_(2)reduction(CO_(2)RR)to multi-carbon(C_(2))products.Optimizing the C-C coupling process,the rate-determining step for C_(2)product generatio...Cu-based catalysts are the most promising candidates for electrochemical CO_(2)reduction(CO_(2)RR)to multi-carbon(C_(2))products.Optimizing the C-C coupling process,the rate-determining step for C_(2)product generation,is an important strategy to improve the production and selectivity of the C_(2)products.In this study,we determined that the local electric field can promote the C-C coupling reaction and enhance CO_(2)electroreduction to C_(2)products.First,finite-element simulations indicated that the high curvature of the Cu nanoneedles results in a large local electric field on their tips.Density functional theory(DFT)calculations proved that a large electric field can promote C-C coupling.Motivated by this prediction,we prepared a series of Cu catalysts with different curvatures.The Cu nanoneedles(NNs)exhibited the largest number of curvatures,followed by the Cu nanorods(NRs),and Cu nanoparticles(NPs).The Cu NNs contained the highest concentration of adsorbed K+,which resulted in the highest local electric field on the needles.CO adsorption sensor tests indicated that the Cu NNs exhibited the strongest CO adsorption ability,and in-situ Fourier-transform infrared spectroscopy(FTIR)showed the strongest*COCO and*CO signals for the Cu NNs.These experimental results demonstrate that high-curvature nanoneedles can induce a large local electric field,thus promoting C-C coupling.As a result,the Cu NNs show a maximum FEC_(2)of 44%for CO_(2)RR at a low potential(-0.6 V vs.RHE),which is approximately 2.2 times that of the Cu NPs.This work provides an effective strategy for enhancing the production of multi-carbon products during CO_(2)RR.展开更多
A novel algorithm was designed and implemented to realize the numerical calculation of the solvent reorganization energy for electron transfer reactions, on the basis of nonequilibrium solvation theory and the dielect...A novel algorithm was designed and implemented to realize the numerical calculation of the solvent reorganization energy for electron transfer reactions, on the basis of nonequilibrium solvation theory and the dielectric polarizable continuum model. Applying the procedure to the well-investigated intramoleeular electron transfer in biphenyl-androstane-naphthyl and biphenyl-androstane-phenanthryl systems, the numerical results of solvent reorganization energy were determined to be around 60 k J/mol, in good agreement with experimental data. Koopman's theorem was adopted for the calculation of the electron transfer coupling element, associated with the linear reaction coordinate approximation. The values for this quantity obtained are acceptable when compared with experimental results.展开更多
We study the one-loop contribution of the effective flavor changing neutral couplings (FCNC) tcZ on the charm quark electric dipole moment. Using the known limits on the top and charm quarks electric dipole moments,...We study the one-loop contribution of the effective flavor changing neutral couplings (FCNC) tcZ on the charm quark electric dipole moment. Using the known limits on the top and charm quarks electric dipole moments, we place limits on these FCNC anomalous couplings.展开更多
This paper reported a 25-year-old hospitalized woman complained of recurrent chest tightness and dyspnea for 3 months.The electrocardiogram showed pre-excitation and the echocardiogram showed left ventricular wall con...This paper reported a 25-year-old hospitalized woman complained of recurrent chest tightness and dyspnea for 3 months.The electrocardiogram showed pre-excitation and the echocardiogram showed left ventricular wall contraction reduced diffusely and moved asynchronously.In the systolic period,the regional septum basal segment moved to the right ventricle like an aneurysm.In cardiac magnetic resonance imaging examination,there was no significant myocardial fibrosis.The patient further had an endomyocardial biopsy and pathological examination showed nonspecific changes,only with mild interstitial edema.After an electrophysiological study,the patient was finally diagnosed with pre-excitation cardiomyopathy with a right anteroseptal para-hisian manifest accessory pathway.Radiofrequency catheter ablation was then performed to block the advanced pathway.6 months after ablation,the left ventricular systolic function and synchrony improved significantly,and the symptoms were alleviated.展开更多
Canonical transient receptor potential 4(TRPC4) forms non-selective cation channels that contribute to phospholipase C-dependent Ca2+ entry into cells following stimulation of G protein coupled receptors and receptor ...Canonical transient receptor potential 4(TRPC4) forms non-selective cation channels that contribute to phospholipase C-dependent Ca2+ entry into cells following stimulation of G protein coupled receptors and receptor tyrosine kinases.Moreover,the channels are regulated by pertussis toxin-sensitive Gi/o proteins,lipids,and various other signaling mechanisms.TRPC4-containing channels participate in the regulation of a variety of physiological functions,including excitability of both gastrointestinal smooth muscles and brain neurons.This review is to present recent advances in the understanding of physiology and development of small molecular modulators of TRPC4 channels.展开更多
Membranes with high ion conductivity and selectivity are important for vanadium redox flow batteries.Herein, densely quaternized anion exchange membranes based on quaternary ammonium functionalized octa-benzylmethyl-c...Membranes with high ion conductivity and selectivity are important for vanadium redox flow batteries.Herein, densely quaternized anion exchange membranes based on quaternary ammonium functionalized octa-benzylmethyl-containing poly(fluorenyl ether ketone)s(QA-OMPFEKs) were prepared from the(i) condensation polymerization of a newly developed octa-benzylmethyl-containing bisphenol monomer via Ullmann coupling,(ii) bromination at the benzylmethyl sites using N-bromosuccinimide, and(iii)quaternization of the bromomethyl groups using trimethylamine. The QA-OMPFEK-20 with an ion exchange capacity(IEC) of 1.66 mmolg^-1 exhibited a higher SO42-conductivity(9.62mScm^-1) than that of the QA-TMPFEK-40(4.82mScm^-1) at room temperature, which had a slightly higher IEC of 1.73 mmolg-1but much lower QA density.The enhanced SO42-conductivity of QA-OMPFEK-20 was attributed to the ion-segregated structure arising from the densely anchored QA groups, which was validated by SAXS observation. Furthermore, the QA-OMPFEK-20 showed much lower VO2+permeability(1.24×10^-14m^2s^-1) than QA-TMPFEK-40(5.40×10^-13m^2s^-1) and Nafion N212(5.36×10^-12m^2s^-1), leading to improved Coulombic and energy efficiencies in Vanadium redox flow batteries(VRFBs). Therefore, the Ullmann coupling extension is a valuable approach for the development of high performance anion exchange membranes for VRFBs.展开更多
Coupling reaction usually refers to the direct C–C bond formation between two carbon fragments.Generally, cross-coupling reactions between nucleophiles and electrophiles have been extensively studied and become the c...Coupling reaction usually refers to the direct C–C bond formation between two carbon fragments.Generally, cross-coupling reactions between nucleophiles and electrophiles have been extensively studied and become the classic model for bond constructions. Another reaction model, bond formation from two nucleophiles through oxidative cross-coupling, has received more and more attention over the past few years. This paper will discuss the concept of oxidative cross-coupling and give an overview of its recent development.展开更多
文摘A thoroughly mechanistic understanding of the electrochemical CO reduction reaction(eCORR)at the interface is significant for guiding the design of high-performance electrocatalysts.However,unintentionally ignored factors or unreasonable settings during mechanism simulations will result in false positive results between theory and experiment.Herein,we computationally identified the dynamic site preference change of CO adsorption with potentials on Cu(100),which was a previously unnoticed factor but significant to potential-dependent mechanistic studies.Combined with the different lateral interactions among adsorbates,we proposed a new C–C coupling mechanism on Cu(100),better explaining the product distribution at different potentials in experimental eCORR.At low potentials(from–0.4 to–0.6 V_(RHE)),the CO forms dominant adsorption on the bridge site,which couples with another attractively aggregated CO to form a C–C bond.At medium potentials(from–0.6 to–0.8 VRHE),the hollow-bound CO becomes dominant but tends to isolate with another adsorbate due to the repulsion,thereby blocking the coupling process.At high potentials(above–0.8 VRHE),the CHO intermediate is produced from the electroreduction of hollow-CO and favors the attraction with another bridge-CO to trigger C–C coupling,making CHO the major common intermediate for C–C bond formation and methane production.We anticipate that our computationally identified dynamic change in site preference of adsorbates with potentials will bring new opportunities for a better understanding of the potential-dependent electrochemical processes.
文摘The electrocatalytic synthesis of imines through the reductive imination of nitroarenes with aldehydes is a facile,environmentally friendly,and valuable process.In this study,high selectivity electrosynthesis of imines was realized through the electrocatalytic C-N coupling reaction between nitroarenes and aryl aldehydes on Co_(9)S_(8)nanoflowers with rich sulfur vacancies(Co_(9)S_(8)-Vs).Comparative experiments revealed that positively charged sulfur vacancies play a pivotal role in boosting catalytic selectivity towards imines.Electron-deficient sulfur vacancies intensified the adsorption of negatively charged Ph-NO_(2),thereby enhancing the conversion rate of the electrochemical nitrobenzene-reduction reaction(eNB-RR).Simultaneously,sulfur vacancies augmented the adsorption capability of negatively charged Ph-CHO,enriching Ph-CHO species at the electrode interface and expediting the Schiff base condensation reaction rate.The experimental results show that the reaction conditions can satisfy the different nitroarenes and aryl aldehydes in the electrocatalytic aqueous-phase system under mild conditions to obtain the corresponding imine products in high selectivity.This study provides a facile and environmentally friendly pathway for future electrocatalytic synthesis of imine.
文摘Carbon dioxide is a cheap, abundant and renewable C1 building block. Over the last two decades, considerable re- search efforts have been devoted to developing new reactions for the efficient incorporation of carbon dioxide into a broad range of compounds for the production of value-added materi- als [1]. Notably, these efforts have culminated in the develop- ment of several transition-metal-catalyzed methods capable of providing access to numerous synthetically important carbox- ylic acids and derivatives using carbon dioxide as a carboxyla- tive reagent [2].
文摘Combining microwave radiation with photocatalytic systems is a promising method to inhibit photogenerated electron-hole recombination and enhance the photocatalytic reaction performance. In this study, we have designed Pd/Pb TiO3 catalysts that can use both microwave fields and photocatalysis. Benefiting from the synergistic effect of microwave field and UV light, the Pb TiO3 crystals convert thermal energy into electrical energy via the pyroelectricity effect, generating positive and negative charges(q+ and q-), while Pd nanoparticles significantly improve the quantum efficiency of the photocatalytic process. The composite catalyst significantly enhances the reaction rate and selectivity of the model Suzuki coupling reaction performed with bromobenzene. Microwave fields can directly act on chemical systems, promoting or changing various chemical reactions in unique ways.
文摘Cu-based catalysts are the most promising candidates for electrochemical CO_(2)reduction(CO_(2)RR)to multi-carbon(C_(2))products.Optimizing the C-C coupling process,the rate-determining step for C_(2)product generation,is an important strategy to improve the production and selectivity of the C_(2)products.In this study,we determined that the local electric field can promote the C-C coupling reaction and enhance CO_(2)electroreduction to C_(2)products.First,finite-element simulations indicated that the high curvature of the Cu nanoneedles results in a large local electric field on their tips.Density functional theory(DFT)calculations proved that a large electric field can promote C-C coupling.Motivated by this prediction,we prepared a series of Cu catalysts with different curvatures.The Cu nanoneedles(NNs)exhibited the largest number of curvatures,followed by the Cu nanorods(NRs),and Cu nanoparticles(NPs).The Cu NNs contained the highest concentration of adsorbed K+,which resulted in the highest local electric field on the needles.CO adsorption sensor tests indicated that the Cu NNs exhibited the strongest CO adsorption ability,and in-situ Fourier-transform infrared spectroscopy(FTIR)showed the strongest*COCO and*CO signals for the Cu NNs.These experimental results demonstrate that high-curvature nanoneedles can induce a large local electric field,thus promoting C-C coupling.As a result,the Cu NNs show a maximum FEC_(2)of 44%for CO_(2)RR at a low potential(-0.6 V vs.RHE),which is approximately 2.2 times that of the Cu NPs.This work provides an effective strategy for enhancing the production of multi-carbon products during CO_(2)RR.
文摘A novel algorithm was designed and implemented to realize the numerical calculation of the solvent reorganization energy for electron transfer reactions, on the basis of nonequilibrium solvation theory and the dielectric polarizable continuum model. Applying the procedure to the well-investigated intramoleeular electron transfer in biphenyl-androstane-naphthyl and biphenyl-androstane-phenanthryl systems, the numerical results of solvent reorganization energy were determined to be around 60 k J/mol, in good agreement with experimental data. Koopman's theorem was adopted for the calculation of the electron transfer coupling element, associated with the linear reaction coordinate approximation. The values for this quantity obtained are acceptable when compared with experimental results.
文摘We study the one-loop contribution of the effective flavor changing neutral couplings (FCNC) tcZ on the charm quark electric dipole moment. Using the known limits on the top and charm quarks electric dipole moments, we place limits on these FCNC anomalous couplings.
文摘This paper reported a 25-year-old hospitalized woman complained of recurrent chest tightness and dyspnea for 3 months.The electrocardiogram showed pre-excitation and the echocardiogram showed left ventricular wall contraction reduced diffusely and moved asynchronously.In the systolic period,the regional septum basal segment moved to the right ventricle like an aneurysm.In cardiac magnetic resonance imaging examination,there was no significant myocardial fibrosis.The patient further had an endomyocardial biopsy and pathological examination showed nonspecific changes,only with mild interstitial edema.After an electrophysiological study,the patient was finally diagnosed with pre-excitation cardiomyopathy with a right anteroseptal para-hisian manifest accessory pathway.Radiofrequency catheter ablation was then performed to block the advanced pathway.6 months after ablation,the left ventricular systolic function and synchrony improved significantly,and the symptoms were alleviated.
基金supported in part by the National Natural Science Foundation of China(81228021)US National Institutes of Health(DK081654)
文摘Canonical transient receptor potential 4(TRPC4) forms non-selective cation channels that contribute to phospholipase C-dependent Ca2+ entry into cells following stimulation of G protein coupled receptors and receptor tyrosine kinases.Moreover,the channels are regulated by pertussis toxin-sensitive Gi/o proteins,lipids,and various other signaling mechanisms.TRPC4-containing channels participate in the regulation of a variety of physiological functions,including excitability of both gastrointestinal smooth muscles and brain neurons.This review is to present recent advances in the understanding of physiology and development of small molecular modulators of TRPC4 channels.
基金supported by the National Natural Science Foundation of China (51503038)
文摘Membranes with high ion conductivity and selectivity are important for vanadium redox flow batteries.Herein, densely quaternized anion exchange membranes based on quaternary ammonium functionalized octa-benzylmethyl-containing poly(fluorenyl ether ketone)s(QA-OMPFEKs) were prepared from the(i) condensation polymerization of a newly developed octa-benzylmethyl-containing bisphenol monomer via Ullmann coupling,(ii) bromination at the benzylmethyl sites using N-bromosuccinimide, and(iii)quaternization of the bromomethyl groups using trimethylamine. The QA-OMPFEK-20 with an ion exchange capacity(IEC) of 1.66 mmolg^-1 exhibited a higher SO42-conductivity(9.62mScm^-1) than that of the QA-TMPFEK-40(4.82mScm^-1) at room temperature, which had a slightly higher IEC of 1.73 mmolg-1but much lower QA density.The enhanced SO42-conductivity of QA-OMPFEK-20 was attributed to the ion-segregated structure arising from the densely anchored QA groups, which was validated by SAXS observation. Furthermore, the QA-OMPFEK-20 showed much lower VO2+permeability(1.24×10^-14m^2s^-1) than QA-TMPFEK-40(5.40×10^-13m^2s^-1) and Nafion N212(5.36×10^-12m^2s^-1), leading to improved Coulombic and energy efficiencies in Vanadium redox flow batteries(VRFBs). Therefore, the Ullmann coupling extension is a valuable approach for the development of high performance anion exchange membranes for VRFBs.
基金supported by the National Basic Research Program of China(2012CB725302)the National Natural Science Foundation of China(21390400,21272180,21302148)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(20120141130002)the Ministry of Science and Technology of China(2012YQ120060)
文摘Coupling reaction usually refers to the direct C–C bond formation between two carbon fragments.Generally, cross-coupling reactions between nucleophiles and electrophiles have been extensively studied and become the classic model for bond constructions. Another reaction model, bond formation from two nucleophiles through oxidative cross-coupling, has received more and more attention over the past few years. This paper will discuss the concept of oxidative cross-coupling and give an overview of its recent development.