Formic acid oxidation reaction(FAOR),as the anodic reaction in direct formic acid fuel cells,has attracted much attention but increasing the mass activity and stability of catalysts still face a bottleneck to meet the...Formic acid oxidation reaction(FAOR),as the anodic reaction in direct formic acid fuel cells,has attracted much attention but increasing the mass activity and stability of catalysts still face a bottleneck to meet the requirements of practical applications.In the past decades,researchers developed many strategies to fix these issues by improving the structure of catalysts and the newly raised single atom catalysts(SACs)show the high mass activity and stability in FAOR.This review first summarized the reaction mechanism involved in FAOR.The mass activity as well as stability of catalysts reported in the past five years have been outlined.Moreover,the synthetic strategies to improve the catalytic performance of catalysts are also reviewed in this work.Finally,we proposed the research directions to guide the rational design of new FAOR catalysts in the future.展开更多
Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. ...Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. Their electrocatalytic activity for formic acid oxidation and oxygen reduction reaction (ORR) in alkaline media was examined by voltammetric techniques. Among the as-prepared catalysts, nanoPdslCu19/Ti catalyst presents the highest current density of 39.8 mA/cm2 at -0.5 V or 66.4 mA/cm2 at -0.3 V for formic acid oxidation. The onset potential of ORR on the nanoPdslCU19/Ti catalyst presents an about 70 mV positive shift compared to that on the nanoPd/Ti, and the current density of ORR at -0.3 V is 2.12 mA/cm2, which is 3.7 times larger than that on the nanoPd/Ti.展开更多
Carbon dioxide(CO_(2)) is the main greenhouse gas and also an ideal C1 feedstock in organic synthesis because it is abundant,nontoxic,nonflammable,and renewable.The synthesis of organic carbamates using CO_(2) as a ph...Carbon dioxide(CO_(2)) is the main greenhouse gas and also an ideal C1 feedstock in organic synthesis because it is abundant,nontoxic,nonflammable,and renewable.The synthesis of organic carbamates using CO_(2) as a phosgene alternative has attracted extensive attention because of the importance of carbamates in organic synthesis and in the pharmaceutical and agrochemical industries.In recent decades,many multicomponent reaction strategies have been designed for constructing different types of organic carbamate molecules.Most of these methods rely on the in situ generation of carbamate anions from CO_(2) and amines,followed by reactions with other coupling partners.Synthetic strategies for acyclic carbamates include nucleophile‐electrophile coupling,nucleo‐phile‐nucleophile oxidative coupling,difunctionalization of unsaturated hydrocarbons,and C–H bond functionalization.Strategies for the synthesizing cyclic carbamates include carboxylative cyclization of in situ‐generated unsaturated amines and difunctionalization of unsaturated amines with CO_(2) and other electrophilic reagents.This review summarizes the recent advances in the synthesis of organic carbamates from CO_(2) using different multicomponent reaction strategies.Future perspectives and challenges in the incorporation of CO_(2) into carbamates are also presented.展开更多
The kinetics of formic acid oxidation (FAO) on Pd(111) in 0.1 mol/L H2SO4+0.1 mol/L HCOOH with and without addition of Na2SO4 is studied using cyclic voltammetry and potential step method, which is compared with that ...The kinetics of formic acid oxidation (FAO) on Pd(111) in 0.1 mol/L H2SO4+0.1 mol/L HCOOH with and without addition of Na2SO4 is studied using cyclic voltammetry and potential step method, which is compared with that in 0.1 mol/L HClO4. It is found that adsorbed sulfate has significant inhibition effect on FAO kinetics. After addition of 0.05 mol/L or 0.1 mol/L Na2SO4, FAO current in the negative-going scan is found to be significantly smaller than that at the same potential in the positive-going scan. We speculate that at potentials positive of the phase transition potential for the (SO4*ad)m+[(H2O)n-H3O+] or(SO4*ad)m+[Na+(H2O)n-H3O+] adlayer, the adlayer structure probably becomes denser and more stable with the increase of potential or with the addition of Na2SO4. The formation of connected adlayer network greatly enhance the stability of the adlayer, and the insertion of positive-charged H+ or Na+ into the adlayer network further reduces the electrostatic repulsion between partially charged sulfates. As a result, the destruction/desorption of compact sulfate adlayer becomes more difficult, which leaves much less free sites on the surface for FAO, and thus FAO kinetics at higher potentials and in the subsequent negative-going potential scan is significantly inhibited.展开更多
The role of carbodiimide as dehydrant in the chemo‐,regio‐and stereoselective Pd(Ⅱ/0)‐catalyzed hydrocarboxylation of various alkynes with HCOOH releasing CO in situ is reported for the first time to obtainα,β‐...The role of carbodiimide as dehydrant in the chemo‐,regio‐and stereoselective Pd(Ⅱ/0)‐catalyzed hydrocarboxylation of various alkynes with HCOOH releasing CO in situ is reported for the first time to obtainα,β‐unsaturated carboxylic acids.Both symmetrical and unsymmetrical monoalkynes show good reactivity.Importantly,2,2’‐(1,4‐phenylene)diacrylic acid can also be synthesized in high yield through the dihydrocarboxylation of 1,4‐diethynylbenzene.Besides,an excellent result in gram scale experiment and TON up to 900 can be obtained,displaying the efficiency of this protocol.Notably,regulating the types and concentrations of dehydrant can control the CO generation,avoiding directly operating toxic CO and circumventing sensitivity issue to the CO amount.On the basis of the attractive features of formic acid including easy preparation through CO_(2) hydrogenation and efficient liberation of CO,this protocol using formic acid as bridging reagent between CO_(2) and CO can be perceived as an indirect utilization of CO_(2),offering an alternative method for preparing acrylic acid analogues.展开更多
This research took 2,6-dimethylpyridine as raw materials under microwave irradiation to syntheses pyridine 2,6-dicarboxylic acid by adding oxidation potassium permanganate. However, there are lots of factors affecting...This research took 2,6-dimethylpyridine as raw materials under microwave irradiation to syntheses pyridine 2,6-dicarboxylic acid by adding oxidation potassium permanganate. However, there are lots of factors affecting the yield including the amount of potassium permanganate and sulfuric acid, reaction time, power, 2,6-dimethylpyridine dosage. We made the further research, using orthogonal experiment to find the optimal process conditions. Thus our research changed the synthesis process from a traditional method to a new type of microwave technology.展开更多
Diisopropylidenated α-D-glucofuranose (1) was oxidated with CrO3-pyridine complex. Oxidated product and its hydrate were separated and were reduced together to synthesize diisopropylidenated α-D-allofuranose ( 3...Diisopropylidenated α-D-glucofuranose (1) was oxidated with CrO3-pyridine complex. Oxidated product and its hydrate were separated and were reduced together to synthesize diisopropylidenated α-D-allofuranose ( 3). The yield of 3 increased by 8% than that with only oxidated product as reduction substrate. Benzoylated derivative of 3 was selectively nydrolyzed and dimesylated to synthesize 3-O-benzoyl-1 .2- O- isopropylidene-α-D-allofuranose ( 5 ) and its dimesylated derivative respectively. The overall yield of 5 from 1 was 36%. Each step and final products were analyzed by ^1H-NMR spectra and other methods. The experiments showed that the influence of acetic acid concentration on selective hydrolysis was obvious. The hydrolysis yield was 81.8%. Oxidation. reduction and other procedures were practical and had application potential.展开更多
Single phytotoxicity of two representative phthalate esters(PAEs),di-n-butyl phthalate(DnBP)and bis(2-ethylhexyl)phthalate(DEHP),was tested in mung bean(Vigna radiata)seedlings germinated for 72 h in soils spiked with...Single phytotoxicity of two representative phthalate esters(PAEs),di-n-butyl phthalate(DnBP)and bis(2-ethylhexyl)phthalate(DEHP),was tested in mung bean(Vigna radiata)seedlings germinated for 72 h in soils spiked with varying concentrations(0-500 mg kg^(-1)soil)of DnBP or DEHP.PAEs added at up to 500 mg kg^(-1)soil exerted no significant effect on germination but both pollutants significantly inhibited root elongation(P<0.01),DEHP inhibited shoot elongation(P<0.01)and DnBP depressed biomass on a fresh weight basis(P<0.05).Seedling shoot and root malondialdehyde(MDA)contents tended to be stimulated by DnBP but inhibited by DEHP.However,increases in superoxide dismutase,peroxidase,ascorbate peroxidase and polyphenol oxidase activities,as well as glutathione(GSH)content,were induced at higher concentrations(e.g.,20 mg kg^(-1))of both compounds.Accumulation of proline in both roots and shoots and the storage compounds,such as free amino acids and total soluble sugars,in whole plant was induced under the stress exerted by both PAEs.The general responses of mung bean seedlings indicated higher toxicity of DnBP than DEHP on primary growth,during which root elongation was a more responsive index.MDA and GSH were more sensitive parameters in the roots than in the shoots and they might be recommended as physiologically sensitive parameters to assess the toxicity of PAE compounds in soils in future long-term studies.展开更多
Hydrolysis and oxidation of formamidine disulfide in acidic medium were investigated using high-performance liquid chro- matography (HPLC) and mass spectrometry (MS) at 25 ~C. By controlling the slow reaction rate...Hydrolysis and oxidation of formamidine disulfide in acidic medium were investigated using high-performance liquid chro- matography (HPLC) and mass spectrometry (MS) at 25 ~C. By controlling the slow reaction rate and choosing appropriate mobile phase, HPLC provides the unique advantages over other methods (UV-Vis, chemical separation) in species tracking and kinetic study. In addition to thiourea and formamidine sulfinic acid, two unreported products were also detected in the hy- drolysis reaction. Mass spectrometry measurement indicates these two products to be formamidine sulfenic acid and thiocyan- ogen with mass weights of 92.28 and 116,36, respectively. In the oxidation of formamidine disulfide by hydrogen peroxide, besides thiourea, formamidine sulfenic acid, formamidine sulfinic acid, thiocyanogen and urea, formamidine sulfonic acid and sulfate could be detected. The oxidation reaction was found to be first order in both forrnamidine disulfide and hydrogen per- oxide. The rate constants of hydrolysis and oxidation reactions were determined in the pH range of 1.5-3.0. It was found both rate constants are increased with the increasing of pH. Experimental curves of different species can be effectively simulated via a mechanism scheme for formamidine disulfide oxidation, including hydrolysis equilibrium of formamidine disulfide and irre- versible hydrolysis of formamidine sulfenic acid.展开更多
基金supported by the National Natural Science Foundation of China(21403125)the Scientific Research Foundation for the Outstanding Young Scientist of Shandong Province(BS2011NJ009)~~
基金Project(22102218)supported by the National Natural Science Foundation of ChinaProject(2022RC1110)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2022QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST,China。
文摘Formic acid oxidation reaction(FAOR),as the anodic reaction in direct formic acid fuel cells,has attracted much attention but increasing the mass activity and stability of catalysts still face a bottleneck to meet the requirements of practical applications.In the past decades,researchers developed many strategies to fix these issues by improving the structure of catalysts and the newly raised single atom catalysts(SACs)show the high mass activity and stability in FAOR.This review first summarized the reaction mechanism involved in FAOR.The mass activity as well as stability of catalysts reported in the past five years have been outlined.Moreover,the synthetic strategies to improve the catalytic performance of catalysts are also reviewed in this work.Finally,we proposed the research directions to guide the rational design of new FAOR catalysts in the future.
基金Project(10JJ9003) supported by Hunan Provincial Natural Science Foundation and Xiangtan Natural Science United Foundation,China Project(11K023) supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. Their electrocatalytic activity for formic acid oxidation and oxygen reduction reaction (ORR) in alkaline media was examined by voltammetric techniques. Among the as-prepared catalysts, nanoPdslCu19/Ti catalyst presents the highest current density of 39.8 mA/cm2 at -0.5 V or 66.4 mA/cm2 at -0.3 V for formic acid oxidation. The onset potential of ORR on the nanoPdslCU19/Ti catalyst presents an about 70 mV positive shift compared to that on the nanoPd/Ti, and the current density of ORR at -0.3 V is 2.12 mA/cm2, which is 3.7 times larger than that on the nanoPd/Ti.
文摘Carbon dioxide(CO_(2)) is the main greenhouse gas and also an ideal C1 feedstock in organic synthesis because it is abundant,nontoxic,nonflammable,and renewable.The synthesis of organic carbamates using CO_(2) as a phosgene alternative has attracted extensive attention because of the importance of carbamates in organic synthesis and in the pharmaceutical and agrochemical industries.In recent decades,many multicomponent reaction strategies have been designed for constructing different types of organic carbamate molecules.Most of these methods rely on the in situ generation of carbamate anions from CO_(2) and amines,followed by reactions with other coupling partners.Synthetic strategies for acyclic carbamates include nucleophile‐electrophile coupling,nucleo‐phile‐nucleophile oxidative coupling,difunctionalization of unsaturated hydrocarbons,and C–H bond functionalization.Strategies for the synthesizing cyclic carbamates include carboxylative cyclization of in situ‐generated unsaturated amines and difunctionalization of unsaturated amines with CO_(2) and other electrophilic reagents.This review summarizes the recent advances in the synthesis of organic carbamates from CO_(2) using different multicomponent reaction strategies.Future perspectives and challenges in the incorporation of CO_(2) into carbamates are also presented.
基金supported by the National Natural Science Foundation of China(No.21872132 and No.21832004)973 Program from the Ministry of Science and Technology of China(No.201503932301)
文摘The kinetics of formic acid oxidation (FAO) on Pd(111) in 0.1 mol/L H2SO4+0.1 mol/L HCOOH with and without addition of Na2SO4 is studied using cyclic voltammetry and potential step method, which is compared with that in 0.1 mol/L HClO4. It is found that adsorbed sulfate has significant inhibition effect on FAO kinetics. After addition of 0.05 mol/L or 0.1 mol/L Na2SO4, FAO current in the negative-going scan is found to be significantly smaller than that at the same potential in the positive-going scan. We speculate that at potentials positive of the phase transition potential for the (SO4*ad)m+[(H2O)n-H3O+] or(SO4*ad)m+[Na+(H2O)n-H3O+] adlayer, the adlayer structure probably becomes denser and more stable with the increase of potential or with the addition of Na2SO4. The formation of connected adlayer network greatly enhance the stability of the adlayer, and the insertion of positive-charged H+ or Na+ into the adlayer network further reduces the electrostatic repulsion between partially charged sulfates. As a result, the destruction/desorption of compact sulfate adlayer becomes more difficult, which leaves much less free sites on the surface for FAO, and thus FAO kinetics at higher potentials and in the subsequent negative-going potential scan is significantly inhibited.
文摘The role of carbodiimide as dehydrant in the chemo‐,regio‐and stereoselective Pd(Ⅱ/0)‐catalyzed hydrocarboxylation of various alkynes with HCOOH releasing CO in situ is reported for the first time to obtainα,β‐unsaturated carboxylic acids.Both symmetrical and unsymmetrical monoalkynes show good reactivity.Importantly,2,2’‐(1,4‐phenylene)diacrylic acid can also be synthesized in high yield through the dihydrocarboxylation of 1,4‐diethynylbenzene.Besides,an excellent result in gram scale experiment and TON up to 900 can be obtained,displaying the efficiency of this protocol.Notably,regulating the types and concentrations of dehydrant can control the CO generation,avoiding directly operating toxic CO and circumventing sensitivity issue to the CO amount.On the basis of the attractive features of formic acid including easy preparation through CO_(2) hydrogenation and efficient liberation of CO,this protocol using formic acid as bridging reagent between CO_(2) and CO can be perceived as an indirect utilization of CO_(2),offering an alternative method for preparing acrylic acid analogues.
文摘This research took 2,6-dimethylpyridine as raw materials under microwave irradiation to syntheses pyridine 2,6-dicarboxylic acid by adding oxidation potassium permanganate. However, there are lots of factors affecting the yield including the amount of potassium permanganate and sulfuric acid, reaction time, power, 2,6-dimethylpyridine dosage. We made the further research, using orthogonal experiment to find the optimal process conditions. Thus our research changed the synthesis process from a traditional method to a new type of microwave technology.
基金Supported by Tianjin Natural Science Foundation ( No. 05YFJMJC09600).
文摘Diisopropylidenated α-D-glucofuranose (1) was oxidated with CrO3-pyridine complex. Oxidated product and its hydrate were separated and were reduced together to synthesize diisopropylidenated α-D-allofuranose ( 3). The yield of 3 increased by 8% than that with only oxidated product as reduction substrate. Benzoylated derivative of 3 was selectively nydrolyzed and dimesylated to synthesize 3-O-benzoyl-1 .2- O- isopropylidene-α-D-allofuranose ( 5 ) and its dimesylated derivative respectively. The overall yield of 5 from 1 was 36%. Each step and final products were analyzed by ^1H-NMR spectra and other methods. The experiments showed that the influence of acetic acid concentration on selective hydrolysis was obvious. The hydrolysis yield was 81.8%. Oxidation. reduction and other procedures were practical and had application potential.
基金Supported by the National Environmental Protection Special Fund for Scientific Research on Public Causes of China(Nos.201109018and 2010467016)
文摘Single phytotoxicity of two representative phthalate esters(PAEs),di-n-butyl phthalate(DnBP)and bis(2-ethylhexyl)phthalate(DEHP),was tested in mung bean(Vigna radiata)seedlings germinated for 72 h in soils spiked with varying concentrations(0-500 mg kg^(-1)soil)of DnBP or DEHP.PAEs added at up to 500 mg kg^(-1)soil exerted no significant effect on germination but both pollutants significantly inhibited root elongation(P<0.01),DEHP inhibited shoot elongation(P<0.01)and DnBP depressed biomass on a fresh weight basis(P<0.05).Seedling shoot and root malondialdehyde(MDA)contents tended to be stimulated by DnBP but inhibited by DEHP.However,increases in superoxide dismutase,peroxidase,ascorbate peroxidase and polyphenol oxidase activities,as well as glutathione(GSH)content,were induced at higher concentrations(e.g.,20 mg kg^(-1))of both compounds.Accumulation of proline in both roots and shoots and the storage compounds,such as free amino acids and total soluble sugars,in whole plant was induced under the stress exerted by both PAEs.The general responses of mung bean seedlings indicated higher toxicity of DnBP than DEHP on primary growth,during which root elongation was a more responsive index.MDA and GSH were more sensitive parameters in the roots than in the shoots and they might be recommended as physiologically sensitive parameters to assess the toxicity of PAE compounds in soils in future long-term studies.
基金supported by the National Natural Science Foundation of China (21073232 & 50921002)the Fundamental Research Fund from the Chinese Central University (2010LKHX02)
文摘Hydrolysis and oxidation of formamidine disulfide in acidic medium were investigated using high-performance liquid chro- matography (HPLC) and mass spectrometry (MS) at 25 ~C. By controlling the slow reaction rate and choosing appropriate mobile phase, HPLC provides the unique advantages over other methods (UV-Vis, chemical separation) in species tracking and kinetic study. In addition to thiourea and formamidine sulfinic acid, two unreported products were also detected in the hy- drolysis reaction. Mass spectrometry measurement indicates these two products to be formamidine sulfenic acid and thiocyan- ogen with mass weights of 92.28 and 116,36, respectively. In the oxidation of formamidine disulfide by hydrogen peroxide, besides thiourea, formamidine sulfenic acid, formamidine sulfinic acid, thiocyanogen and urea, formamidine sulfonic acid and sulfate could be detected. The oxidation reaction was found to be first order in both forrnamidine disulfide and hydrogen per- oxide. The rate constants of hydrolysis and oxidation reactions were determined in the pH range of 1.5-3.0. It was found both rate constants are increased with the increasing of pH. Experimental curves of different species can be effectively simulated via a mechanism scheme for formamidine disulfide oxidation, including hydrolysis equilibrium of formamidine disulfide and irre- versible hydrolysis of formamidine sulfenic acid.