期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
生物礁生态系统演化历史与地球环境的进化 被引量:4
1
作者 齐文同 范嘉淞 《地学前缘》 EI CAS CSCD 2002年第3期124-124,共1页
关键词 生物 生态系统 地球环境 多样性 海洋环境 生物大绝灭事件
在线阅读 下载PDF
川东地区二叠纪-三叠纪界线地层地质与地球化学特征 被引量:6
2
作者 刘萍 郑荣才 +2 位作者 常海亮 梁宁 周刚 《地质论评》 CAS CSCD 北大核心 2018年第1期29-44,共16页
PTB界线是地学界长期以来讨论最热烈、最前缘的科学问题和研究热点之一。以华蓥山涧水沟和重庆尖刀山2个PTB界线地层剖面为例,按生物演化过程和沉积相特征,将剖面中的PTB界线地层划分为生物富集层、生物绝灭层和生物萧条层3个生物演替层... PTB界线是地学界长期以来讨论最热烈、最前缘的科学问题和研究热点之一。以华蓥山涧水沟和重庆尖刀山2个PTB界线地层剖面为例,按生物演化过程和沉积相特征,将剖面中的PTB界线地层划分为生物富集层、生物绝灭层和生物萧条层3个生物演替层组,从中识别出生物地层PTB(B)界线和岩石地层PTB(R)界线2种性质的PTB界线,其中位于下部的PTB(B)界线以Hindeodus parvus牙形石首现为标志,上部的PTB(R)界线以古暴露面和暴露面两侧岩性、岩相突变的沉积超覆面为标志,两者相距约4.56 m,分别为3个生物演替层的组分界线。P—T之交发生的所有海平面下降、生物绝灭、火山喷发及晚二叠世晚期正常海向早三叠世早期文石海转化等复杂地质事件,都发生在此2个不同性质的PTB界线之间。Fe、Mn、Sr微量元素和C、O、Sr稳定同位素地球化学特征的规律性变化与相关控制因素,也都出现在此2个PTB界线之间,与PTB界线地层中所出现的各种复杂地质事件有良好的对应关系和沉积学响应特征。 展开更多
关键词 二叠纪—三叠纪界线地层 全球海平面下降 生物大绝灭 火山活动 牙形石带 地球化学
在线阅读 下载PDF
安徽巢湖平顶山剖面微古植物演化研究及意义
3
作者 王伟洁 《科技视界》 2019年第26期62-63,共2页
P/T之交的生态环境演变的内容、特点规模及其成因,一直是当今地学界研究的热点课题之一。本文通过安徽巢湖平顶山剖面部分层位的微古植物化石统计分析,研究得出作为第一营养级的微古植物绝灭和复苏早于微古动物。同时印证了许多学者关... P/T之交的生态环境演变的内容、特点规模及其成因,一直是当今地学界研究的热点课题之一。本文通过安徽巢湖平顶山剖面部分层位的微古植物化石统计分析,研究得出作为第一营养级的微古植物绝灭和复苏早于微古动物。同时印证了许多学者关于二叠纪末的生物大绝灭,许多生物的绝灭不是正在界线上,而是在界线以下就发生,以及二叠纪—三叠纪界线附近存在两次生物危机的结论。 展开更多
关键词 安徽巢湖地区 二叠纪末期 微古植物 生物大绝灭
在线阅读 下载PDF
Mass extinction and Pangea integration during the Paleozoic-Mesozoic transition 被引量:26
4
作者 YIN HongFu SONG HaiJun 《Science China Earth Sciences》 SCIE EI CAS 2013年第11期1791-1803,共13页
The greatest Phanerozoic mass extinction happened at the end-Permian to earliest Triassic. About 95% species, 82% genera, and more than half families became extinct, constituting the sole macro-mass extinction in geol... The greatest Phanerozoic mass extinction happened at the end-Permian to earliest Triassic. About 95% species, 82% genera, and more than half families became extinct, constituting the sole macro-mass extinction in geological history. This event not only caused the great extinction but also destroyed the 200 Myr-long Paleozoic marine ecosystem, prompted its transition to Mesozoic ecosystem, and induced coal gap on land as well as reef gap and chert gap in ocean. The biotic crisis during the Paleozoic-Mesozoic transition was a long process of co-evolution between geospheres and biosphere. The event sequence at the Permian-Triassic boundary (PTB) reveals two-episodic pattern of rapidly deteriorating global changes and biotic mass ex- tinction and the intimate relationship between them. The severe global changes coupling multiple geospheres may have affect- ed the Pangea integration on the Earth's surface spheres, which include: the Pangea integration→enhanced mountain height and basin depth, changes of wind and ocean current systems; enhanced ocean basin depth→the greatest Phanerozoic regression at PTB, disappearance of epeiric seas and subsequent rapid transgression; the Pangea integration→thermal isolation effect of continental lithosphere and decrease of mid-ocean ridges→development of continental volcanism; two-episode volcanism causing LIPs of the Emeishan Basalt and the Siberian Trap (25%251 Ma)→global warming and mass extinction; continental aridification and replacement of monsoon system by latitudinal wind system→destruction of vegetation; enhanced weathering and CH4 emission→negative excursion of δ^13C; mantle plume→crust doming→regression; possible relation between the Illawarra magnetic reversal and the PTB extinction, and so on. Mantle plume produced the Late Permian LIPs and mantle convection may have caused the process of the Pangea integration. Subduction, delamination, and accumulation of the earth's cool lithospheric material at the "D" layer of CMB started mantle plume by heat compensation and disturbed the outer core ther- too-convection, and the latter in turn would generate the mid-Permian geomagnetic reversal. These core and mantle perturbations may have caused the Pangea integration and two successive LIPs in the Permian, and probably finally the mass extinction at the PTB. 展开更多
关键词 Permian-Triassic boundary mass extinction Pangea integration multi-sphere coupling mantle plume
原文传递
The large increase of δ^(13)C_(carb)-depth gradient and the end-Permian mass extinction 被引量:13
5
作者 SONG HaiJun TONG JinNan +3 位作者 XIONG YanLin SUN DongYing TIAN Li SONG HuYue 《Science China Earth Sciences》 SCIE EI CAS 2012年第7期1101-1109,共9页
Carbonate carbon isotope (δ^13Ccarb) has received considerable attention in the Permian-Triassic transition for its rapid negative shift coinciding with the great end-Permian mass extinction event. The mechanism ha... Carbonate carbon isotope (δ^13Ccarb) has received considerable attention in the Permian-Triassic transition for its rapid negative shift coinciding with the great end-Permian mass extinction event. The mechanism has long been debated for such a c~ δ^13Ccarb negative excursion through the end-Permian crisis and subsequent large perturbations in the entire Early Triassic. A δ^13Ccarb depth gradient is observed at the Permian-Triassic boundary sections of different water-depths, i.e., the Yangou, Meishan, and Shangsi sections, and such a large δ^13Ccarb-depth gradient near the end-Permian mass extinction horizon is believed to result from a stratified Paleotethys Ocean with widespread anoxic/euxinic deep water. The evolution of δ^13Ccarb-depth gradient com- bined with paleontological and geochemical data suggests that abundant cyanobacteria and vigorous biological pump in the immediate aftermath of the end-Permian extinction would be the main cause of the large δ^13Ccarb-depth gradient, and the enhanced continental weathering with the mass extinction on land provides a mass amount of nutriment for the flourishing cyanobacteria. Photic zone anoxia/euxinia from the onset of chemocline upward excursion might be the direct cause for the mass extinction whereas the instability of chemocline in the stratified Early Triassic ocean would be the reason for the delayed and involuted biotic recovery. 展开更多
关键词 Permian-Triassic boundary carbon isotope ocean stratification bioproductivity biological pump mass extinction
原文传递
End-Guadalupian mass extinction and negative carbon isotope excursion at Xiaojiaba,Guangyuan,Sichuan 被引量:8
6
作者 WEI HengYe CHEN DaiZhao +1 位作者 YU Hao WANG JianGuo 《Science China Earth Sciences》 SCIE EI CAS 2012年第9期1480-1488,共9页
The end-Paleozoic biotic crisis is characterized by two-phase mass extinctions;the first strike,resulting in a large decline of sessile benthos in shallow marine environments,occurred at the end-Guadalupian time.In or... The end-Paleozoic biotic crisis is characterized by two-phase mass extinctions;the first strike,resulting in a large decline of sessile benthos in shallow marine environments,occurred at the end-Guadalupian time.In order to explore the mechanism of organisms' demise,detailed analyses of depositional facies,fossil record,and carbonate carbon isotopic variations were carried out on a Maokou-Wujiaping boundary succession in northwestern Sichuan,SW China.Our data reveal a negative carbon isotopic excursion across the boundary;the gradual excursion with relatively low amplitude(2.15‰) favors a long-term influx of isotopically light 12 C sourced by the Emeishan basalt trap,rather than by rapid releasing of gas hydrate.The temporal coincidence of the beginning of accelerated negative carbon isotopic excursion with onsets of sea-level fall and massive biotic demise suggests a cause-effect link between them.Intensive volcanic activity of the Emeishan trap and sea-level fall could have resulted in detrimental environmental stresses and habitat loss for organisms,particularly for those benthic dwellers,leading to their subsequent massive extinction. 展开更多
关键词 mass extinction Emeishan trap sea-level fall carbon cycle end-Guadalupian Guangyuan SW China
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部