The bubble growth and detachment behavior in the bottom blowing process were investigated. Four multi-hole nozzle configurations with different opening ratios were assessed experimentally using high-speed photography ...The bubble growth and detachment behavior in the bottom blowing process were investigated. Four multi-hole nozzle configurations with different opening ratios were assessed experimentally using high-speed photography and digital image processing. For these configurations, the experiments reveal that the bubble growth consists of a petal-like stage, an expansion stage and a detachment stage. The petal-like shape is qualitatively described through the captured images, while the non-spherical bubbles are analyzed by the aspect ratio. The bubble size at the detachment is quantified by the maximum caliper distance and the bubble equivalent diameter. Considering the dependence on the opening ratio, different prediction models for the ratio of maximum caliper distance to hydraulic diameter of the nozzle outlet and the dimensionless bubble diameter are established. The comparative analysis results show that the proposed prediction model can accurately predict the bubble detachment size under the condition of multi-hole nozzles.展开更多
In an atrocious ocean environment,the lateral propulsion hole could potentially be partly out of water and capture an air cavity.Bubbles would form when the captured air cavity escapes underwater and they may affect t...In an atrocious ocean environment,the lateral propulsion hole could potentially be partly out of water and capture an air cavity.Bubbles would form when the captured air cavity escapes underwater and they may affect the performance of the sonar.The common commercial computational fluid dynamics software CFX was adopted to calculate the ambient flow field around the lateral propulsion hole generated by a moving vessel.The oscillation of the spherical bubble was based on the Rayleigh-Plesset equation and its migration was modeled using the momentum equation.The radiated noise of the oscillating bubble was also studied.The aim is that the results from this paper would provide some insight into corresponding fluid and acoustic study.展开更多
On the basis of Navier-Stockes equation and convection-diffusion equation, combined with surface tension and penetration models, the equations of moment and mass transfer between bubble and the ambient non-Newtonian l...On the basis of Navier-Stockes equation and convection-diffusion equation, combined with surface tension and penetration models, the equations of moment and mass transfer between bubble and the ambient non-Newtonian liquid were established. The formation of a single bubble from a submersed nozzle of 1.0 mm diameter and the mass transfer from an artificially fixed bubble into the ambient liquid were simulated by the volume-of-fluid (VOF) method. Good agreement between simulation results and experimental data confirmed the validity of the numerical method. Furthermore, the concentration distribution around rising bubbles in shear thinning non-Newtonian fluid was simulated. When the process of a single ellipsoidal bubble with the bubble deformation rate below 2.0 rises, the concentration distribution is a single-tail in the bubble's wake, but it is fractal when thebubble deformation rate is greater than 2.0. For the overtaking of two in-line rising bubbles, the concentration distribution area between two bubbles broadens gradually and then coalescence occurs. The bifurcation of concentration distribution appears in the rear of the resultant bubble.展开更多
基金Project(51676211)supported by the National Natural Science Foundation of ChinaProject(2015zzts044)supported by Innovation Foundation for Postgraduate of Central South University,ChinaProject(2017SK2253)supported by the Key R&D Plan of Hunan Province,China
文摘The bubble growth and detachment behavior in the bottom blowing process were investigated. Four multi-hole nozzle configurations with different opening ratios were assessed experimentally using high-speed photography and digital image processing. For these configurations, the experiments reveal that the bubble growth consists of a petal-like stage, an expansion stage and a detachment stage. The petal-like shape is qualitatively described through the captured images, while the non-spherical bubbles are analyzed by the aspect ratio. The bubble size at the detachment is quantified by the maximum caliper distance and the bubble equivalent diameter. Considering the dependence on the opening ratio, different prediction models for the ratio of maximum caliper distance to hydraulic diameter of the nozzle outlet and the dimensionless bubble diameter are established. The comparative analysis results show that the proposed prediction model can accurately predict the bubble detachment size under the condition of multi-hole nozzles.
基金Supported by the National Science Foundation of China (11002038)Key Project of National Natural Science Funds (50939002)+2 种基金National Defense Foundation Scientific Project (B2420110011)the National Science Foundation for Young Scientists of China (51009035)Natural Science Funds of Heilongjiang Province (E201047,A200901)
文摘In an atrocious ocean environment,the lateral propulsion hole could potentially be partly out of water and capture an air cavity.Bubbles would form when the captured air cavity escapes underwater and they may affect the performance of the sonar.The common commercial computational fluid dynamics software CFX was adopted to calculate the ambient flow field around the lateral propulsion hole generated by a moving vessel.The oscillation of the spherical bubble was based on the Rayleigh-Plesset equation and its migration was modeled using the momentum equation.The radiated noise of the oscillating bubble was also studied.The aim is that the results from this paper would provide some insight into corresponding fluid and acoustic study.
基金Supported by the National iqatural Science Foundation of China (21076139).
文摘On the basis of Navier-Stockes equation and convection-diffusion equation, combined with surface tension and penetration models, the equations of moment and mass transfer between bubble and the ambient non-Newtonian liquid were established. The formation of a single bubble from a submersed nozzle of 1.0 mm diameter and the mass transfer from an artificially fixed bubble into the ambient liquid were simulated by the volume-of-fluid (VOF) method. Good agreement between simulation results and experimental data confirmed the validity of the numerical method. Furthermore, the concentration distribution around rising bubbles in shear thinning non-Newtonian fluid was simulated. When the process of a single ellipsoidal bubble with the bubble deformation rate below 2.0 rises, the concentration distribution is a single-tail in the bubble's wake, but it is fractal when thebubble deformation rate is greater than 2.0. For the overtaking of two in-line rising bubbles, the concentration distribution area between two bubbles broadens gradually and then coalescence occurs. The bifurcation of concentration distribution appears in the rear of the resultant bubble.