期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
连续挤压(conform)管材焊合性能的研究 被引量:1
1
作者 张胜华 胡建国 《轻合金加工技术》 CAS 北大核心 1991年第12期24-26,36,共4页
本文从分析conform挤压铝管产品质量入手,对管材焊合性能进行研究,找出影响管材焊合性能的因素。
关键词 连续 挤压 铝管 焊合性能
在线阅读 下载PDF
6063铝合金单、双杆连续挤压扩展成形的对比 被引量:4
2
作者 赵颖 宋宝韫 +2 位作者 闫志勇 张旭 李冰 《塑性工程学报》 CAS CSCD 北大核心 2015年第1期18-23,共6页
双杆连续挤压是宽厚比大的铝材的一种高效加工方法,文章针对6063铝合金单、双杆连续挤压扩展成形进行有限元数值模拟对比分析,模拟结果表明,双杆挤压较单杆挤压更能合理的分配金属的流动,金属挤压温度、速度和等效应变分布更加均匀,且... 双杆连续挤压是宽厚比大的铝材的一种高效加工方法,文章针对6063铝合金单、双杆连续挤压扩展成形进行有限元数值模拟对比分析,模拟结果表明,双杆挤压较单杆挤压更能合理的分配金属的流动,金属挤压温度、速度和等效应变分布更加均匀,且挤压轮扭矩、挡料块受力均低于单杆挤压,因此在扩展挤压成形方面双杆挤压优于单杆挤压。双杆扩展挤压产生的焊缝呈花瓣形状,焊缝处晶粒尺寸大于基体晶粒尺寸;焊缝的存在对产品的力学性能会产生一定的影响,当拉伸力与焊缝成90°时,焊缝质量对产品力学性能的影响最大。 展开更多
关键词 6063铝 单杆连续挤压 双杆连续挤压 扩展成形 焊合性能
在线阅读 下载PDF
Microstructures and properties of welded joint of aluminum alloy to galvanized steel by Nd:YAG laser + MIG arc hybrid brazing-fusion welding 被引量:5
3
作者 秦国梁 苏玉虎 王术军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期989-995,共7页
According to the differences in melting point between aluminum alloy and steel, 6013-T4 aluminum alloy was joined to galvanized steel by large spot Nd:YAG laser + MIG arc hybrid brazing-fusion welding with ER4043(A... According to the differences in melting point between aluminum alloy and steel, 6013-T4 aluminum alloy was joined to galvanized steel by large spot Nd:YAG laser + MIG arc hybrid brazing-fusion welding with ER4043(AlSi5) filler wire. The microstructures and mechanical properties of the brazed-fusion welded joint were investigated. The joint is divided into two parts of fusion weld and brazed seam. There is a zinc-rich zone at fusion weld toe, which consists of α(Al)-Zn solid solution and Al-Zn eutectic. The brazed seam is the Fe-Al intermetallic compounds (IMCs) layer of 2-4μm in thickness, and the IMCs include FeAl2, Fe2Al5 and Fe4Al13. FeAl2 and Fe2Al5 are located in the compact reaction layer near the steel side, and Fe4Al13 with tongue shape or sawtooth shape grows towards the fusion weld. The tensile strength of the joint firstly increases and then decreases as the welding current and laser power increase, the highest tensile strength can be up to 247.3 MPa, and the fracture usually occurs at fusion zone of the fusion weld. The hardness is the highest at the brazed seam because of hard Fe-Al IMCs, and gradually decreases along the fusion weld and galvanized steel, respectively. 展开更多
关键词 brazing-fusion weldingi welding of dissimilar metals hybrid welding mechanical properties intermetallic compounds
在线阅读 下载PDF
Microstructure and properties of laser micro welded joint of TiNi shape memory alloy 被引量:7
4
作者 龚伟怀 陈玉华 柯黎明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2044-2048,共5页
Butt welding of 0.2 mm-thick TiNi shape memory alloy sheet (SMA) was carried out using impulse laser, and tensile strength, fracture morphology, microstructure and phase change behaviour of welded joint were studied... Butt welding of 0.2 mm-thick TiNi shape memory alloy sheet (SMA) was carried out using impulse laser, and tensile strength, fracture morphology, microstructure and phase change behaviour of welded joint were studied. The results show that using impulse laser can realize good butt welding of TiNi SMA sheet, tensile strength of welded joint is 683 MPa, which achieves 97% of that of cold rolled base metal, and the fracture mode of welded joint is ductile type as well as base metal. The welded joint can be divided into four zones according to grain size and microstructure. The microstructures of welded seam center zone are fine equiaxed crystals and the microstructures of both lower surface and upper surface edge zones are columnar crystals. When welded joint is vacuum annealed after welding, the phase transformation process is basically similar to the annealed base metal. 展开更多
关键词 TiNi shape memory alloy laser micro welding microstructure properties phase transformation behavior
在线阅读 下载PDF
Microstructure characterization of Ti-6Al-4V titanium laser weld and its deformation 被引量:8
5
作者 徐培全 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2118-2123,共6页
Slip deformation in Ti-6Al-4V titanium laser welds was observed. Laser welding was used to prepare the titanium welds. Macrostructure, microstructure, mechanical property and structure of laser welds were studied usin... Slip deformation in Ti-6Al-4V titanium laser welds was observed. Laser welding was used to prepare the titanium welds. Macrostructure, microstructure, mechanical property and structure of laser welds were studied using optical microscope, scanning electron microscope, compression experiment, transmission electron microscope (TEM) and high resolution TEM. Subsequently, slip deformation mechanism occurred in fracture and etched weld was discussed. The results indicate that the maximum compression strength reaches 1.191 GPa. Slip deformation easily happens in titanium laser welds and the minimum slip bands are 600 nm and 75 nm respectively in fracture and etched laser welds. 展开更多
关键词 TITANIUM laser welding DEFORMATION mechanical properties
在线阅读 下载PDF
Microstructure and mechanical properties of GTA weldments of titanium matrix composites prepared with or without current pulsing 被引量:2
6
作者 毛建伟 吕维洁 +2 位作者 王立强 张荻 覃继宁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1393-1399,共7页
The effects of current pulsing on the microstructure, hardness and tensile properties at different temperatures of gas tungsten arc (GTA) weldments of titanium matrix composites were studied. Full-penetration butt j... The effects of current pulsing on the microstructure, hardness and tensile properties at different temperatures of gas tungsten arc (GTA) weldments of titanium matrix composites were studied. Full-penetration butt joints were made with or without current pulsing. Optical microscopy, hardness test and scanning electron microscopy were employed to evaluate the metallurgical characteristics of welded joints. Tensile properties of weldments at different temperatures were studied and correlated with the microstructure. The results exhibit that current pulsing leads to the refinement of the weld microstrucmre and TiB whisker and the redistribution of reinforcements resulting in higher hardness, tensile strength and ductility of weldments in the as-welded condition. 展开更多
关键词 titanium matrix composites pulsed current WELDING mechanical properties grain refinement microstructure
在线阅读 下载PDF
Microstructure and mechanical properties of Mg-Li alloy after TIG welding 被引量:11
7
作者 刘旭贺 顾世海 +3 位作者 巫瑞智 冷雪松 闫久春 张密林 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期477-481,共5页
Tungsten inert gas weld was carried out on super-light magnesium-lithium alloy plates with a thickness of 2 mm, using argon gas as a protecting atmosphere. The microstructure and mechanical properties of the welded jo... Tungsten inert gas weld was carried out on super-light magnesium-lithium alloy plates with a thickness of 2 mm, using argon gas as a protecting atmosphere. The microstructure and mechanical properties of the welded joints were investigated. The results indicate that the microstructure in the fusion zone is fine, and the microstructure in the heat-affected zone is coarser than the parent metal. The tensile strength of the welded joint is about 84% that of the parent metal. The fracture occurs in a mixed type of toughness and brittleness in the heat-affected zone. During the welding process, aluminum and cerium are enriched at grain boundaries in the fusion zone. 展开更多
关键词 Mg-Li alloy TIG welding MICROSTRUCTURE mechanical properties SEGREGATION
在线阅读 下载PDF
Effects of extrusion speed of continuous extrusion with double billets on welding performance of 6063 Al alloy 被引量:7
8
作者 Ying ZHAO Jiu-yang PEI +2 位作者 Li-li GUO Xin-bing YUN Huai-chao MA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第6期1561-1571,共11页
During continuous extrusion,the welds were formed at the confluence of two billets.Influences of extrusion wheel rotational speed on micromorphology and properties of welds of 6063 Al alloy were investigated through m... During continuous extrusion,the welds were formed at the confluence of two billets.Influences of extrusion wheel rotational speed on micromorphology and properties of welds of 6063 Al alloy were investigated through microstructure observation,tensile test,and SEM analyses.Welding parameters were analyzed using finite element simulation.Results indicated that metal welding was remarkably affected by oxide on outer surface of the double billets during continuous extrusion.Degree of oxide breakage on the welding surface increased due to the evident increase in effective strain rate with increasing extrusion speed.The high temperature induced by increased extrusion speed accelerated the formation of metallurgical bonding.A portion of weld seam lines slowly disappeared,and the proportion of the welding interface that failed to reach metallurgical bonding was also gradually reduced.Tensile strength and elongation of the weld specimen increased with the increase of extrusion speed. 展开更多
关键词 continuous extrusion 6063 Al alloy extrusion speed welding performance
在线阅读 下载PDF
Laser-weldable Si_p-SiC_p/Al hybrid composites with bilayer structure for electronic packaging 被引量:6
9
作者 朱梦剑 李顺 +1 位作者 赵恂 熊德赣 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期1032-1038,共7页
Laser-weldable Sip-SiCp/Al hybrid composites with high volume fraction (60%-65%) of SiC reinforcement were fabricated by compression moulding and vacuum gas pressure infiltration technology. Microscopic observation ... Laser-weldable Sip-SiCp/Al hybrid composites with high volume fraction (60%-65%) of SiC reinforcement were fabricated by compression moulding and vacuum gas pressure infiltration technology. Microscopic observation displayed that the Sip-SiCp/Al hybrid composites with bilayer structure were compact without gas pores and the intergradation between Sip/Al layer and SiCp/Al layer was homogeneous and continuous. Further investigation revealed that the Sip-SiCp/Al hybrid composites possessed low density (2.96 g/cm^3), high gas tightness (1.0 mPa·cm^3)/s), excellent thermal management function as a result of high thermal conductivity (194 W/(m·K) and low coefficient of thermal expansion (7.0×10^-6 K-1). Additionally, Sip-SiCp/Al hybrid composites had outstanding laser welding adaptability, which is significantly important for electronic packaging applications. The gas tightness of components after laser welding (48 mPa·cm^3)/s) can well match the requirement of advanced electronic packaging. Several kinds of these precision components passed tests and were put into production. 展开更多
关键词 Sip-SiCp/Al hybrid composites laser welding thermo-physical properties electronic packaging
在线阅读 下载PDF
Friction stir welding of aluminum to copper—An overview 被引量:13
10
作者 Nidhi SHARMA Zahid A.KHAN Arshad Noor SIDDIQUEE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第10期2113-2136,共24页
Components made by joining different materials are required in various engineering applications.Fabrication of suchcomponents is a challenging task due to the vast difference in mechanical,thermal and electrical prope... Components made by joining different materials are required in various engineering applications.Fabrication of suchcomponents is a challenging task due to the vast difference in mechanical,thermal and electrical properties of the materials beingused.Friction stir welding(FSW)is capable of joining dissimilar materials such as aluminum(Al)and copper(Cu)and thereforeresearchers have used this novel process for dissimilar joining.Consequently,several works pertaining to dissimilar joining,specifically Al?Cu,are available in the literature but they are scattered in different sources,which makes the task of gatheringinformation about dissimilar FSW of Al?Cu cumbersome.This work has been written with an aim to provide all pertinentinformation related to dissimilar FSW of Al?Cu at one place to ease the problems of researchers.It comprehensively covers andsummarizes the topics such as the effect of tool design and geometry,FSW process parameters,FSW strategies on mechanicalproperties,microstructure and formation of defects during dissimilar FSW of Al?Cu.In addition,it also presents and discussesseveral variants of dissimilar FSW of Al?Cu.Finally,this work not only puts forth major findings of the previous researchers but alsosuggests future recommendations for dissimilar FSW of Al?Cu. 展开更多
关键词 aluminium COPPER friction stir welding intermetallic compounds mechanical properties weld nugget zone
在线阅读 下载PDF
Effect of post-weld heat treatment on microstructure and properties of Ti-23Al-17Nb alloy laser beam welding joints 被引量:6
11
作者 王国庆 吴爱萍 +3 位作者 赵玥 邹贵生 陈强 任家烈 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期732-739,共8页
The mechanical properties of Ti-23Al-17Nb (mole fraction,%) laser beam welding alloy joint at room temperature are comparable to that of the base materials.However,the strength and ductility of the as-welded joint det... The mechanical properties of Ti-23Al-17Nb (mole fraction,%) laser beam welding alloy joint at room temperature are comparable to that of the base materials.However,the strength and ductility of the as-welded joint deteriorate seriously after high temperature circulation.The effect of post-welded heat treatment on the microstructure and mechanical properties of the joint was investigated.The heat treatment was taken at 980 ℃ for 1.5 h,then furnace cooling and air cooling were performed separately.The results indicate that proper post-welded heat treatment improves the ductility of the joint at high temperature. 展开更多
关键词 Ti-23Al-17Nb Ti3Al-based alloy laser beam welding post-weld heat treatment mechanical properties
在线阅读 下载PDF
Microstructure and properties of probeless friction stir spot welding of AZ31 magnesium alloy joints 被引量:7
12
作者 Xia-wei YANG Wu-yuan FENG +4 位作者 Wen-ya LI Xiu-rong DONG Ya-xin XU Qiang CHU Shuo-tian YAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第11期2300-2309,共10页
The AZ31 magnesium alloy with a thickness of 1.8 mm was welded by the probeless friction stir spot welding process without Zn interlayer.The influence of process parameters on joint microstructure and mechanical prope... The AZ31 magnesium alloy with a thickness of 1.8 mm was welded by the probeless friction stir spot welding process without Zn interlayer.The influence of process parameters on joint microstructure and mechanical properties was investigated by using different rotating speeds and dwell time.Microstructure of joints is divided into three regions:stir zone,thermomechanically-affected zone and heat-affected zone.With the increase of rotation speed and dwell time,the depth of stir zone gradually increases,and hook defects extend from the interface of two plates to the surface of the upper plate.The tensile shear strength of joints and two fracture modes(shear fracture and plug fracture)are closely related to hook defects.The maximum tensile shear strength of the joint is 4.22 kN when rotation speed and dwell time are 1180 r/min and 9 s,respectively.Microhardness value and its fluctuation in upper sheet are evidently higher than those of the lower sheet. 展开更多
关键词 probeless friction stir spot welding AZ31 alloy mechanical properties fracture mechanism
在线阅读 下载PDF
Influence of rotational speed on mechanical properties of friction stir lap welded 6061-T6 Al alloy 被引量:6
13
作者 Firouz FADAEIFARD Khamirul Amin MATORI +6 位作者 Meysam TOOZANDEHJANI Abdul Razak DAUD Mohd Khairol Anuar Mohd ARIFFIN Norinsan Kamil OTHMAN Farhad GHARAVI Abdul Hadi RAMZANI Farhad OSTOVAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期1004-1011,共8页
The effect of rotational speed on macro and microstructures, hardness, lap shear performance and failure mode of friction stir lap welding on AA6061-T6 Al alloy with 5 mm in thickness was studied by field-emission sca... The effect of rotational speed on macro and microstructures, hardness, lap shear performance and failure mode of friction stir lap welding on AA6061-T6 Al alloy with 5 mm in thickness was studied by field-emission scanning electron microscopy (FE-SEM). The results represent much closer hardness distribution in the upper and lower plates at the lowest rotational speed. It indicates the Fe-compounds in the fracture surface of the nugget zone by EDX. 展开更多
关键词 aluminum alloy friction stir lap welding mechanical properties
在线阅读 下载PDF
Microstructure and mechanical properties of 6061 aluminum alloy laser-MIG hybrid welding joint 被引量:3
14
作者 FAN Cong YANG Shang-lei +2 位作者 DUAN Chen-feng ZHU Min-qi BAI Yi-shan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第3期898-911,共14页
In this paper, 3 mm 6061 aluminum alloy sheets were welded by laser MIG hybrid welding. Based on the experiment, the best welding parameters were determined to ensure the penetration welding. The detailed microstructu... In this paper, 3 mm 6061 aluminum alloy sheets were welded by laser MIG hybrid welding. Based on the experiment, the best welding parameters were determined to ensure the penetration welding. The detailed microstructure,tensile and fatigue fracture morphology and surface fatigue damage of the welded joints were analyzed by optical microscope(OM), scanning electron microscope(SEM) and energy dispersive spectrometer(EDS). The results show that there are two main kinds of precipitates, one is the long Si rich precipitates at the grain boundaries, the other is the intragranular Cu rich precipitates. The tensile test results show that the tensile strength of the joint is 224 MPa, which is only 70.2% of the base metal. Through the analysis of tensile fracture, there are great differences in the formation of tensile dimple. In the tensile-tensile fatigue test with a stress rate of 0.1, the conditional fatigue limits of base metal and welded joint are 101.9 MPa and 54.4 MPa, respectively. By comparing the fatigue fracture of the welded joints under different stress amplitudes, it was found that the main factor leading to the fracture of the joint is porosity. Through further analysis of the pore defects, it was found that there are transgranular and intergranular propagation ways of microcracks in the pores, and the mixed propagation way was also found. 展开更多
关键词 aluminum alloy laser-MIG hybrid welding fatigue property MICROSTRUCTURE mechanical properties
在线阅读 下载PDF
Effect of Si content on laser welding performance of Al-Mn-Mg alloy
15
作者 赵丕植 刘婧 迟之东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2208-2213,共6页
The correlation between Si content (0.1%-0.5%, mass fraction) and pulse laser welding performance of AI-Mn-Mg aluminum alloy sheets was studied. The sheets were fabricated in the laboratory, with gauge of 0.45 mm, H... The correlation between Si content (0.1%-0.5%, mass fraction) and pulse laser welding performance of AI-Mn-Mg aluminum alloy sheets was studied. The sheets were fabricated in the laboratory, with gauge of 0.45 mm, H16 temper by pulse laser welding. It was found that no cracking existed in the welding pool as Si content was below 0.34%. However, when the Si content increased to 0.47%, cracking formed in the welding pool. Microstructure observations indicated that residual eutectic phases distributed at the grain boundaries were discontinuous and appeared to be small particles in lower Si content alloys; the residual eutectic phases distributed at the grain boundaries were partially continuous and appeared to be films in higher Si content alloys. These phenomena could explain why Si content adversely affected the laser welding performance. 展开更多
关键词 Al-Mn-Mg alloy laser welding performance Si content CRACK residual eutectic phase
在线阅读 下载PDF
Effects of laser beam welding parameters on mechanical properties and microstructure of AZ31B magnesium alloy 被引量:5
16
作者 G.PADMANABAN V.BALASUBRAMANIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期1917-1924,共8页
The effects of laser beam welding process parameters such as laser power,welding speed and focal position on mechanical properties and microstructure of AZ31B magnesium alloy were studied.Nine joints were fabricated u... The effects of laser beam welding process parameters such as laser power,welding speed and focal position on mechanical properties and microstructure of AZ31B magnesium alloy were studied.Nine joints were fabricated using different levels of laser power,welding speed and focal position.Tensile properties of the welded joints were evaluated and correlated with the weld zone microstructure and hardness.It is found that the joints fabricated using a laser power of 2 500 W,welding speed of 5.5 m/min and focal position of-1.5 mm yield superior tensile properties compared with the other joints.The formation of very fine grains in weld region,higher fusion zone hardness and uniformly distributed finer precipitates are the main reasons for superior tensile properties of these joints. 展开更多
关键词 laser beam welding magnesium alloy tensile properties laser power welding speed focal position
在线阅读 下载PDF
Effect of axial force on microstructure and tensile properties of friction stir welded AZ61A magnesium alloy 被引量:7
17
作者 A.RAZAL ROSE K.MANISEKAR V.BALASUBRAMANIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期974-984,共11页
The influences of axial force on tensile properties of friction stir welded AZ61A magnesium alloy were studied. Five different values of axial forces ranging from 3 to 7 kN were used to fabricate the joints. Tensile p... The influences of axial force on tensile properties of friction stir welded AZ61A magnesium alloy were studied. Five different values of axial forces ranging from 3 to 7 kN were used to fabricate the joints. Tensile properties of the joints were evaluated and correlated with the stir zone microstructure and hardness. From this investigation, it is found that the joint fabricated with an axial force of 5 kN exhibits superior tensile properties compared to other joints. The formation of finer grains in the stir zone and higher hardness of the stir zone are the main reasons for the superior tensile properties of these joints. 展开更多
关键词 AZ61A magnesium alloy friction stir welding tensile properties MICROHARDNESS MICROSTRUCTURE
在线阅读 下载PDF
An investigation on electrochemical performances of as-cast and annealed La_(0.8)Mg_(0.2)Ni_(3.3)Co_(0.2)Si_x(x=0-0.2)alloy electrodes for Ni/MH battery application 被引量:5
18
作者 张羊换 陈莉翠 +3 位作者 赵宸 杨泰 徐超 赵栋梁 《Journal of Central South University》 SCIE EI CAS 2014年第6期2125-2135,共11页
The La-Mg-Ni-based A2B7-type La0.5Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The influences of the additional silicon and the annealing treatment on the structure and elect... The La-Mg-Ni-based A2B7-type La0.5Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The influences of the additional silicon and the annealing treatment on the structure and electrochemical performances of the alloys were investigated systemically. Both of the analyses of XRD and SEM reveal that the as-cast and annealed alloys are of a multiphase structure, involving two main phases (La, Mg)2Ni7 and LaNi5 as well as one minor phase LaNi3. The addition of Si and annealing treatment bring on an evident change in the phase abundances and cell parameters of (La, Mg)2Ni7 and LaNi5 phase for the alloy without altering its phase structure. The phase abundances decrease from 74.3% (x=0) to 57.8% (x=0.2) for the (La, Mg)2Ni7 phase, and those of LaNi5 phase increase from 20.2% (x^0) to 37.3% (x=0.2). As for the electrochemical measurements, adding Si and performing annealing treatment have engendered obvious impacts. The cycle stability of the alloys is improved dramatically, being enhanced from 80.3% to 93.7% for the as-annealed (950 ℃) alloys with Si content increasing from 0 to 0.2. However, the discharge capacity is reduced by adding Si, from 399.4 to 345.3 mA.h/g as the Si content increases from 0 to 0.2. Furthermore, such addition makes the electrochemical kinetic properties of the alloy electrodes first increase and then decrease. Also, it is found that the overall electrochemical properties of the alloys first augment and then fall with the annealing temperature rising. 展开更多
关键词 A2B7-type electrode alloy adding Si annealing treatment structure electrochemical performances
在线阅读 下载PDF
Effect of ultrasonic assisted friction stir welding on microstructure and mechanical properties of AZ91-C magnesium alloy 被引量:12
19
作者 Faraz BARADARANI Amir MOSTAFAPOUR Maghsoud SHALVANDI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第12期2514-2522,共9页
The influence of ultrasonic vibrations on microstructure and mechanical properties of the AZ91-C magnesium alloy after ultrasonic assisted friction stir welding(UaFSW)in comparison with conventional friction stir weld... The influence of ultrasonic vibrations on microstructure and mechanical properties of the AZ91-C magnesium alloy after ultrasonic assisted friction stir welding(UaFSW)in comparison with conventional friction stir welding(FSW)was investigated.The FSW was applied at the rotational speed of 1400 r/min and welding speed of 40 mm/min and no defects were observed.Using the same welding parameters,the process was carried out with inducing ultrasonic vibrations to the weld line at the amplitude of 15μm.The microstructure of the specimens was observed with optical and scanning electron microscopy.The results indicate that a very fine microstructure is obtained in UaFSW with respect to that of conventional FSW.Moreover,β-Mg17Al12 coarse dendrites are segregated to very fine and partly spherical particles that homogeneously distribute inα-Mg matrix.This remarkably-modified morphology of microstructure attributed to severe plastic deformation comes from ultrasonic vibration and friction stirring effect.Tensile and hardness tests were performed to evaluate the mechanical properties of the welds.According to the results,the vibration greatly improves the mechanical properties of the conventional FSW joint.The tensile strength and hardness are increased from 195 MPa and HV 79 in conventional FSW to 225 MPa and HV 87 in UaFSW,respectively. 展开更多
关键词 ultrasonic assisted friction stir welding AZ91 magnesium alloy microstructure mechanical properties
在线阅读 下载PDF
Property alterations of Sn-0.6Cu-0.05Ni-Ge lead-free solder by Ag, Bi, In and Sb addition 被引量:3
20
作者 Kannachai KANLAYASIRI Rachata KONGCHAYASUKAWAT 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第6期1166-1175,共10页
The Sn-Cu-Ni-Ge solder is a strong challenger to the Sn-Ag-Cu(SAC) solders as a replacement for the Sn-Pb eutectic solder. This research investigated the effects of addition of Ag, Bi, In, and Sb on the physical pro... The Sn-Cu-Ni-Ge solder is a strong challenger to the Sn-Ag-Cu(SAC) solders as a replacement for the Sn-Pb eutectic solder. This research investigated the effects of addition of Ag, Bi, In, and Sb on the physical properties of the Sn-0.6 Cu-0.05 Ni-Ge(SCNG) lead-free solder and the interfacial reaction with the Cu substrate. The melting behavior, microstructure, tensile strength, and wettability of the SCNG-x(x=Ag, Bi, In, Sb) solders were examined. The findings revealed that the introduction of Ag, Bi, In, and Sb minimally altered the solidus temperature, liquidus temperature, and tensile strength of the solder. However, the cooling behavior and solidified microstructure of the solder were affected by the concentration of the alloying elements. The wettability of the SCNG solder was improved with the doping of the alloying elements except Sb. The thickness of intermetallic layer was increased by the addition of the alloying elements and was related to the cooling behavior of the solder. The morphology of intermetallic layer between the SCNG-x solders and the Cu substrate was different from that of the typical SAC solders. In conclusion, alloying the SCNG solder with Ag, Bi, In or Sb is able to improve particular properties of the solder. 展开更多
关键词 Sn-Cu-Ni-Ge solder lead-free solder alloying effect physical properties
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部