通过软件仿真方法分析和设计了W波段回旋行波管的输入输出耦合器、磁控注入式电子枪以及高频互作用电路,根据优化结果加工了实物并进行了热测实验.实验结果表明,电子注电压60 k V,电流6 A,在94 GHz频率获得了最大峰值功率78 k W,增益53....通过软件仿真方法分析和设计了W波段回旋行波管的输入输出耦合器、磁控注入式电子枪以及高频互作用电路,根据优化结果加工了实物并进行了热测实验.实验结果表明,电子注电压60 k V,电流6 A,在94 GHz频率获得了最大峰值功率78 k W,增益53.9 d B以及21.7%的效率,峰值功率大于50 k W带宽达到3.8 GHz.PIC粒子模拟和热测实验均表明,设计的W波段回旋行波管能够稳定的工作,从而证明周期加载高频互作用电路在抑制寄生模式以及自激振荡方面具有很大的优势.展开更多
An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demons...An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demonstrated.Extensive field experimental work was carried out in order to gather enough data for training and prediction.The statistical methods,such as the correlation coefficient,absolute fraction of variance and root mean square error,were given to compare the predicted and actual values for model validation.The simulation results predicted with the ANFIS can be used to simulate the performance of a reversibly used cooling tower quite accurately.Therefore,the ANFIS approach can reliably be used for forecasting the performance of RUCT.展开更多
Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base o...Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base oil and other components were carried out to develop the SK and SD series of rolling oils for cold rolling of stainless steel.The developed oils were used in the stainless steel cold rolling lubrication experiments,and were successfully applied in the actual cold rolling operation of stainless steel.Compared with a foreign product,the tribological properties,the thermal oxidation stability,and the rolling lubrication performance of the developed stainless steel cold rolling oils were studied.Test results showed that the tribological properties of the thereby developed rolling oils and the reference one were almost at the same level,and to some extent the performance of rolling was even better than the foreign product,at the same time the stainless steel sheet could retain its well annealed performance.Meanwhile,within a certain range,the lubrication of the rolling oil became better as its viscosity increased at the same level of saponification value,which could provide a lower friction coefficient,so that a higher maximum reduction ratio of the rolled piece through a constant roll gap and a minimum thickness could be secured.Also,similar phenomena appeared as the saponification value increased at a same viscosity level of the rolling oils.展开更多
Flue gases exhausted from thermal power plants contain more than 50% of the fuel thermal energy. In the present work, experimental investigation was carried out to study the utilization of thermal energy in flue gases...Flue gases exhausted from thermal power plants contain more than 50% of the fuel thermal energy. In the present work, experimental investigation was carried out to study the utilization of thermal energy in flue gases to enhance the performance of modified solar chimney consisting of Savonius wind rotor. A modified solar chimney model was designed and fabricated to carry out experimental measurement. The model consists of thermal energy conversion unit; Savonius wind rotor and a chimney. The thermal energy in the flue gas transfers to the air particles in the air channel across the absorber plate and results in upward air stream due to the buoyancy effect. With an 9 absorber area of 2.36 re'and flue gas mass flow rate of0.18 kg/s, air velocity' of 4.1 m/s was achieved at the top of the thermal unit. Increasing the mass flow rate of the flue gas to 0.24 kg/s enhances the air velocity to be 4.6 m/s. The results have demonstrated the possibility' of utilizing the thermal energy in the waste flue gas to enhance the performance of a solar chimney and facilitate the continuous operation during the absence of the sun.展开更多
Boiling of water/triethyleneglycol(TEG)binary solution has a wide-ranging application in the gas processing engineering.Design,operation and optimization of the involved boilers require accurate prediction of boiling ...Boiling of water/triethyleneglycol(TEG)binary solution has a wide-ranging application in the gas processing engineering.Design,operation and optimization of the involved boilers require accurate prediction of boiling heat transfer coefficient between surface and solution.In this investigation,nucleate pool boiling heat transfer coefficient has been experimentally measured on a horizontal rod heater in water/TEG binary solutions in a wide range of concentrations and heat fluxes under ambient condition.The present experimental data are correlated using major existing correlations.In addition a correlation is presented for prediction of pool boiling heat transfer for the system in which the vapour pressure of one component is negligible.This model is based on the mass transfer rate equation for prediction of the concentration at the bubble vapor/liquid interface.Based on this prediction,the temperature of the interface and accordingly,the boiling heat transfer coefficient could be straightforwardly calculated from the known concentration at the interface.It is shown that this simple model has sufficient accuracy and is acceptable below the medium concentrations of TEG when the vapor equilibrium concentration of TEG is almost zero.The presented model excludes any tuning parameter and requires very few physical properties to apply.展开更多
In thermoacoustic system,the characteristic of complex compliance of a regenerator has a great influence on energy stored and dissipation of the whole engine.In order to investigate the performance of regenerators wit...In thermoacoustic system,the characteristic of complex compliance of a regenerator has a great influence on energy stored and dissipation of the whole engine.In order to investigate the performance of regenerators with different matrix geometries and materials coupled with different acoustic systems,an experimental measurement and analysis method was presented.By measuring the resonant frequency,the complex compliance and quality factor of five kinds of matrix were experimentally analyzed respectively in the system of loudspeaker-driven thermoacoustic resonator(TAR)with different lengths.The experimental results show that the real part of complex compliance of the regenerator with pin-array has a maximum value among the measured matrixes and its quality factor is the largest(28.222)with the least dissipation factor of 0.035 4.So the pin-array matrix is testified to behave more excellently on the energy conversion than other matrixes.Compared with other factors the complex compliance of a regenerator contributes more to the performance of a thermoacoustic system.展开更多
To prevent direct contact of the melt and basemat concrete of the cavity in a postulated core melt accident, a core catcher concept is suggested. Upon ablation of the sacrificial layer on top of the core catcher while...To prevent direct contact of the melt and basemat concrete of the cavity in a postulated core melt accident, a core catcher concept is suggested. Upon ablation of the sacrificial layer on top of the core catcher while molten core material is discharged, a mixture of water and gas is injected from below. It is expected that a simultaneous injection of water and gas could prevent a possible steam explosion/spike and also suppress the rapid release of steam which might result in fast over-pressurization of the containment. A test facility for the core catcher using a thermite reaction technique for the generation of the melt was designed and constructed at Korea Atomic Energy Research Institute (KAERI). The first series of tests were performed by using a mixture of Al, Fe2O3, and CaO as a stimulant. As a first try, only water was injected from the bottom of the melt through five water injection nozzles when the melt front reached the water injection nozzles. A description of the test facility for the core catcher, the thermite composition, and the methods of experiment is included. The test results are discussed.展开更多
In the last several decades, circulating fluidized bed reactors have been studied in many aspects including hydrodynamics, heat and mass transfer and gas–solid two phase contacting. However, despite the abundance of ...In the last several decades, circulating fluidized bed reactors have been studied in many aspects including hydrodynamics, heat and mass transfer and gas–solid two phase contacting. However, despite the abundance of review papers on hydrodynamics, there is no summary paper on gas–solid contact efficiency to date, especially on high density circulating fluidized beds(CFBs). This paper gives an introduction to, and a review of the measurement of contact efficiency in circulating fluidized bed riser. Firstly, the popular testing method of contact efficiency including the method of heating transfer experiment and hot model reaction are discussed, then previous published papers are reviewed based on the discussed methods. Some key results of the experimental work are described and discussed. Gas–solid contact efficiency is affected by the operating conditions as well as the particle size distribution. The result of the contact efficiency shows that the CFB riser is far away from an ideal plug flow reactor due to the characteristics of hydrodynamics in the riser. Lacunae in the available literature have been delineated and recommendations have been made for further work.展开更多
Solid–liquid phase equilibrium data for binary(L-arabinose–water) and(D-xylose–water) systems at temperatures from(269.85–298.05) K and ternary(L-arabinose–D-xylose–water) system at temperatures of 273.85 K,278....Solid–liquid phase equilibrium data for binary(L-arabinose–water) and(D-xylose–water) systems at temperatures from(269.85–298.05) K and ternary(L-arabinose–D-xylose–water) system at temperatures of 273.85 K,278.85 K and 284.45 K were measured at atmospheric pressure.The ternary phase diagrams of the systems were constructed on the base of the measured solubility.Two pure solid phases were formed at given temperatures,including pure L-arabinose and pure D-xylose,which were con firmed and determined by the method of Schreinemakers' wet residue.At the same temperature,the crystallization region of L-arabinose was larger than D-xylose's.The acquired solubility data were then correlated using the NRTL model,Wilson model and Xu model.The calculated solubility with the three models agreed well with the experimental values.展开更多
China, as one of the members of ITER (international thermonuclear experimental reactor) project, one of the most important construction tasks is the fabrication of the first wall panel and shield blankets, which is ...China, as one of the members of ITER (international thermonuclear experimental reactor) project, one of the most important construction tasks is the fabrication of the first wall panel and shield blankets, which is the key engineering technology of ITER construction and might be one of the crucial issues of the future reactor too. Since 2004, an associated research team including Southwestern Institute of Physics ( SWIP ), Ninxia Non-ferrous Metal Co. Itd and Chinese Institute of Engineering Physics, as well as Nuclear Power Institute of China has been established. Up to now, several series of interlayer for hot isostatic press ( HIP ) connection of beryllium and CuCrZr alloy have been tested. They are titanium film or coating, Cu coating and Al or AISiMg alloy etc. The bonding strength (tensile or shear strength ) of HIPed Be/Cu joints is up to 100 MPa.展开更多
Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analy...Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analyzes the condition and mechanism of ammonia corrosion occurring in copper tube used in coal-fired power plants. Using a general steam condensation testing equipment only for horizontal single tube, with water vapor and water as working fluid, on two types of steel tube with 2-side enhancement heat transfer, namely, a spirally fluted tube and a ratchet tube with internal spiral groove (RISG tube) which was developed recently, a set of experimental tests are conducted to investigate the characteristics of heat transfer and hydromeehanics. In order to compare easily, both one copper smooth tube and one steel smooth tube are also used in the experiment. The experimental results, which get from single horizontal tube, show that the overall heat transfer coefficient of steel spirally fluted tube are improved by 10%o to 17%, and that of the steel RISG tube(22%-28%) is better than steel spirally fluted tube, its flow resistance coefficient is only increased by 22% to 66% when compared with smooth tube. Based on a lot of experimental data, the steel spirally fluted tube and the steel RISG tube were applied in a low pressure preheater and an oil-cooler of some or other power plant respectively. The field testing results showed that their heat transfer coefficient with each types of enhancement heat transfer tubes were improved by 2.5% and 21%-45% comparing with copper smooth tube heat exchangers. Both basic and field experiment indicates that the steel tube with 2-side enhancement heat transfer is an ideal choice for heat exchanger reconstruction in no copper issue in power plants.展开更多
Though TES (thermal energy storage) is developed hugely in most of the solar power generation plants, it is less growth in implementing a modular type of TES in a solar plant, e.g., solar dish/stifling engine applic...Though TES (thermal energy storage) is developed hugely in most of the solar power generation plants, it is less growth in implementing a modular type of TES in a solar plant, e.g., solar dish/stifling engine application. The main issue in designing the TES system is its thermal capacity of storage materials, e.g., insulator. This study is focusing on the potential waste material as an insulator for thermal energy storage applications. The insulator usage is to reduce the heat transfer between two mediums and the capability is measured by its resistance to heat flow. It is needed to obtain optimal materials to energy conversion at the same time reduce the waste generation. Therefore, a small-scale experimental testing of natural cooling process of an insulated tank within a confined room without any forced cooling system, e.g., fan. The testing is repeated by changing the insulator using the potential waste material from natural and industrial waste and also by changing the HTF (heat transfer fluid). The analysis is performed on the relationship between heat loss and the reserved period by the insulator. The results indicate the percentage of period of the insulated tank withstands the heat compared to non-insulated tank, e.g., cotton reserved the period of 14% more than non-insulated tank to withstand the heat transfer of cooking oil to the surrounding. The paper finally justifies the most potential waste material as an insulator in different heat transfer fluids.展开更多
Mechanics effect of laser thermal stress is a new manufacturing technology, which uses thermal stress by high power laser acted on the surface of metal material to produce stress field. The technologies such as sheet ...Mechanics effect of laser thermal stress is a new manufacturing technology, which uses thermal stress by high power laser acted on the surface of metal material to produce stress field. The technologies such as sheet metal formation by laser thermal stress, measurement by laser scratching and measurement by XRD (X-ray diffraction) are formed based on mechanics effects of laser thermal stress. The mechanisms of sheet metal formation by laser thermal stress, measurement by laser scratching and measurement by XRD are analyzed, and the theory of photo-mechanics manufacturing and detecting technologies based on laser thermal stress is originally put forward, whose experiment is primitively researched, and the manufacturing theory by mechanics effects of laser thermal stress is established.展开更多
N2O represents a popular oxidizer for hybrid rocket motors for a variety of reasons, including safety, ease of access and self-pressurization. It is often used as a saturated two-phase fluid in these applications to t...N2O represents a popular oxidizer for hybrid rocket motors for a variety of reasons, including safety, ease of access and self-pressurization. It is often used as a saturated two-phase fluid in these applications to take advantage of self-pressurization. Recent interest in using this oxidizer in regeneratively cooled engines requires a detailed heat transfer process analysis to the coolant, in order to quantify performance. Since the injection of N2O typically takes place in the two-phase region, our study focuses on heat transfer rates in this region, and extends the region to include superheated vapor. This analysis is critical for these cooling applications, because the exothermic decomposition nature of N2O also means that unchecked heating in the superheated region may result in a runaway reaction in the cooling passages. Furthermore, provided that sufficient heat transfer rates are available, N2O is expected to accelerate in the cooling passages due to Rayleigh flow effects much like those of a calorically perfect gas. The proximity of superheated N2O to its saturated vapor curve, at the conditions studied here, makes the suitability of a perfect gas model questionable, but that benchmarks is still useful. This paper presents the development of an experimental apparatus (a "Rayleigh tube"), specifically designed to study this problem, and test the analytical methods developed to model it. Since we focus on the development of the apparatus, the data presented were uses primarily calorically perfect gas surrogates, but the goal is to apply the apparatus and method to N2O. The design and construction of the Rayleigh tube is presented, along with preliminary results with perfect gases. Finally, we present preliminary results on heated N2O flow. Using a simple model for predicted dry-out point, we investigate where superheating may be expected to occur. We present estimates of critical heating and compare them to the heat required to achieve self-decomposition.展开更多
The thermal resistances distribution in different wet-bulb temperatures, air velocities and spraying water densities were achieved by the experimental test. The fluctuation of the water film convection and the water-a...The thermal resistances distribution in different wet-bulb temperatures, air velocities and spraying water densities were achieved by the experimental test. The fluctuation of the water film convection and the water-air interfacial thermal resistance were reviewed especially. In the distribution of thermal resistance, the rank of the thermal resistance proportion (from max to min) is air flow heat transfer resistance, heat transfer resistance between refrigerant and wall, water film convection resistance and wall heat transfer resistance. When the heat flux is constant, the total resistance lowers nearly along with the increasing of air flow and water spray density. But there are a best air flow value of 2.98 m/s and a best spray water density of 0.064 kg/(m ·s) respectively, if continue to increase them, condensation performance is not significantly improved any more. The test results are available to improve the evaporative condenser performance and the designing lever.展开更多
文摘通过软件仿真方法分析和设计了W波段回旋行波管的输入输出耦合器、磁控注入式电子枪以及高频互作用电路,根据优化结果加工了实物并进行了热测实验.实验结果表明,电子注电压60 k V,电流6 A,在94 GHz频率获得了最大峰值功率78 k W,增益53.9 d B以及21.7%的效率,峰值功率大于50 k W带宽达到3.8 GHz.PIC粒子模拟和热测实验均表明,设计的W波段回旋行波管能够稳定的工作,从而证明周期加载高频互作用电路在抑制寄生模式以及自激振荡方面具有很大的优势.
基金Projects(51108165, 51178170) supported by the National Natural Science Foundation of China
文摘An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demonstrated.Extensive field experimental work was carried out in order to gather enough data for training and prediction.The statistical methods,such as the correlation coefficient,absolute fraction of variance and root mean square error,were given to compare the predicted and actual values for model validation.The simulation results predicted with the ANFIS can be used to simulate the performance of a reversibly used cooling tower quite accurately.Therefore,the ANFIS approach can reliably be used for forecasting the performance of RUCT.
文摘Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base oil and other components were carried out to develop the SK and SD series of rolling oils for cold rolling of stainless steel.The developed oils were used in the stainless steel cold rolling lubrication experiments,and were successfully applied in the actual cold rolling operation of stainless steel.Compared with a foreign product,the tribological properties,the thermal oxidation stability,and the rolling lubrication performance of the developed stainless steel cold rolling oils were studied.Test results showed that the tribological properties of the thereby developed rolling oils and the reference one were almost at the same level,and to some extent the performance of rolling was even better than the foreign product,at the same time the stainless steel sheet could retain its well annealed performance.Meanwhile,within a certain range,the lubrication of the rolling oil became better as its viscosity increased at the same level of saponification value,which could provide a lower friction coefficient,so that a higher maximum reduction ratio of the rolled piece through a constant roll gap and a minimum thickness could be secured.Also,similar phenomena appeared as the saponification value increased at a same viscosity level of the rolling oils.
文摘Flue gases exhausted from thermal power plants contain more than 50% of the fuel thermal energy. In the present work, experimental investigation was carried out to study the utilization of thermal energy in flue gases to enhance the performance of modified solar chimney consisting of Savonius wind rotor. A modified solar chimney model was designed and fabricated to carry out experimental measurement. The model consists of thermal energy conversion unit; Savonius wind rotor and a chimney. The thermal energy in the flue gas transfers to the air particles in the air channel across the absorber plate and results in upward air stream due to the buoyancy effect. With an 9 absorber area of 2.36 re'and flue gas mass flow rate of0.18 kg/s, air velocity' of 4.1 m/s was achieved at the top of the thermal unit. Increasing the mass flow rate of the flue gas to 0.24 kg/s enhances the air velocity to be 4.6 m/s. The results have demonstrated the possibility' of utilizing the thermal energy in the waste flue gas to enhance the performance of a solar chimney and facilitate the continuous operation during the absence of the sun.
文摘Boiling of water/triethyleneglycol(TEG)binary solution has a wide-ranging application in the gas processing engineering.Design,operation and optimization of the involved boilers require accurate prediction of boiling heat transfer coefficient between surface and solution.In this investigation,nucleate pool boiling heat transfer coefficient has been experimentally measured on a horizontal rod heater in water/TEG binary solutions in a wide range of concentrations and heat fluxes under ambient condition.The present experimental data are correlated using major existing correlations.In addition a correlation is presented for prediction of pool boiling heat transfer for the system in which the vapour pressure of one component is negligible.This model is based on the mass transfer rate equation for prediction of the concentration at the bubble vapor/liquid interface.Based on this prediction,the temperature of the interface and accordingly,the boiling heat transfer coefficient could be straightforwardly calculated from the known concentration at the interface.It is shown that this simple model has sufficient accuracy and is acceptable below the medium concentrations of TEG when the vapor equilibrium concentration of TEG is almost zero.The presented model excludes any tuning parameter and requires very few physical properties to apply.
基金Projects(50676068,50576024)supported by the National Natural Science Foundation of China
文摘In thermoacoustic system,the characteristic of complex compliance of a regenerator has a great influence on energy stored and dissipation of the whole engine.In order to investigate the performance of regenerators with different matrix geometries and materials coupled with different acoustic systems,an experimental measurement and analysis method was presented.By measuring the resonant frequency,the complex compliance and quality factor of five kinds of matrix were experimentally analyzed respectively in the system of loudspeaker-driven thermoacoustic resonator(TAR)with different lengths.The experimental results show that the real part of complex compliance of the regenerator with pin-array has a maximum value among the measured matrixes and its quality factor is the largest(28.222)with the least dissipation factor of 0.035 4.So the pin-array matrix is testified to behave more excellently on the energy conversion than other matrixes.Compared with other factors the complex compliance of a regenerator contributes more to the performance of a thermoacoustic system.
文摘To prevent direct contact of the melt and basemat concrete of the cavity in a postulated core melt accident, a core catcher concept is suggested. Upon ablation of the sacrificial layer on top of the core catcher while molten core material is discharged, a mixture of water and gas is injected from below. It is expected that a simultaneous injection of water and gas could prevent a possible steam explosion/spike and also suppress the rapid release of steam which might result in fast over-pressurization of the containment. A test facility for the core catcher using a thermite reaction technique for the generation of the melt was designed and constructed at Korea Atomic Energy Research Institute (KAERI). The first series of tests were performed by using a mixture of Al, Fe2O3, and CaO as a stimulant. As a first try, only water was injected from the bottom of the melt through five water injection nozzles when the melt front reached the water injection nozzles. A description of the test facility for the core catcher, the thermite composition, and the methods of experiment is included. The test results are discussed.
基金Supported by the Scientific Research Funds from China University of Petroleum(Beijing)(No.2462014YJRC018)partially supported by the National Natural Science Foundation of China(No.21506253 and No.91534204)
文摘In the last several decades, circulating fluidized bed reactors have been studied in many aspects including hydrodynamics, heat and mass transfer and gas–solid two phase contacting. However, despite the abundance of review papers on hydrodynamics, there is no summary paper on gas–solid contact efficiency to date, especially on high density circulating fluidized beds(CFBs). This paper gives an introduction to, and a review of the measurement of contact efficiency in circulating fluidized bed riser. Firstly, the popular testing method of contact efficiency including the method of heating transfer experiment and hot model reaction are discussed, then previous published papers are reviewed based on the discussed methods. Some key results of the experimental work are described and discussed. Gas–solid contact efficiency is affected by the operating conditions as well as the particle size distribution. The result of the contact efficiency shows that the CFB riser is far away from an ideal plug flow reactor due to the characteristics of hydrodynamics in the riser. Lacunae in the available literature have been delineated and recommendations have been made for further work.
基金Supported by the National Natural Science Foundation of China(21376231)
文摘Solid–liquid phase equilibrium data for binary(L-arabinose–water) and(D-xylose–water) systems at temperatures from(269.85–298.05) K and ternary(L-arabinose–D-xylose–water) system at temperatures of 273.85 K,278.85 K and 284.45 K were measured at atmospheric pressure.The ternary phase diagrams of the systems were constructed on the base of the measured solubility.Two pure solid phases were formed at given temperatures,including pure L-arabinose and pure D-xylose,which were con firmed and determined by the method of Schreinemakers' wet residue.At the same temperature,the crystallization region of L-arabinose was larger than D-xylose's.The acquired solubility data were then correlated using the NRTL model,Wilson model and Xu model.The calculated solubility with the three models agreed well with the experimental values.
文摘China, as one of the members of ITER (international thermonuclear experimental reactor) project, one of the most important construction tasks is the fabrication of the first wall panel and shield blankets, which is the key engineering technology of ITER construction and might be one of the crucial issues of the future reactor too. Since 2004, an associated research team including Southwestern Institute of Physics ( SWIP ), Ninxia Non-ferrous Metal Co. Itd and Chinese Institute of Engineering Physics, as well as Nuclear Power Institute of China has been established. Up to now, several series of interlayer for hot isostatic press ( HIP ) connection of beryllium and CuCrZr alloy have been tested. They are titanium film or coating, Cu coating and Al or AISiMg alloy etc. The bonding strength (tensile or shear strength ) of HIPed Be/Cu joints is up to 100 MPa.
文摘Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analyzes the condition and mechanism of ammonia corrosion occurring in copper tube used in coal-fired power plants. Using a general steam condensation testing equipment only for horizontal single tube, with water vapor and water as working fluid, on two types of steel tube with 2-side enhancement heat transfer, namely, a spirally fluted tube and a ratchet tube with internal spiral groove (RISG tube) which was developed recently, a set of experimental tests are conducted to investigate the characteristics of heat transfer and hydromeehanics. In order to compare easily, both one copper smooth tube and one steel smooth tube are also used in the experiment. The experimental results, which get from single horizontal tube, show that the overall heat transfer coefficient of steel spirally fluted tube are improved by 10%o to 17%, and that of the steel RISG tube(22%-28%) is better than steel spirally fluted tube, its flow resistance coefficient is only increased by 22% to 66% when compared with smooth tube. Based on a lot of experimental data, the steel spirally fluted tube and the steel RISG tube were applied in a low pressure preheater and an oil-cooler of some or other power plant respectively. The field testing results showed that their heat transfer coefficient with each types of enhancement heat transfer tubes were improved by 2.5% and 21%-45% comparing with copper smooth tube heat exchangers. Both basic and field experiment indicates that the steel tube with 2-side enhancement heat transfer is an ideal choice for heat exchanger reconstruction in no copper issue in power plants.
文摘Though TES (thermal energy storage) is developed hugely in most of the solar power generation plants, it is less growth in implementing a modular type of TES in a solar plant, e.g., solar dish/stifling engine application. The main issue in designing the TES system is its thermal capacity of storage materials, e.g., insulator. This study is focusing on the potential waste material as an insulator for thermal energy storage applications. The insulator usage is to reduce the heat transfer between two mediums and the capability is measured by its resistance to heat flow. It is needed to obtain optimal materials to energy conversion at the same time reduce the waste generation. Therefore, a small-scale experimental testing of natural cooling process of an insulated tank within a confined room without any forced cooling system, e.g., fan. The testing is repeated by changing the insulator using the potential waste material from natural and industrial waste and also by changing the HTF (heat transfer fluid). The analysis is performed on the relationship between heat loss and the reserved period by the insulator. The results indicate the percentage of period of the insulated tank withstands the heat compared to non-insulated tank, e.g., cotton reserved the period of 14% more than non-insulated tank to withstand the heat transfer of cooking oil to the surrounding. The paper finally justifies the most potential waste material as an insulator in different heat transfer fluids.
基金this research from the Scientific Research Fund of Jiangsu Polytechnic University(GrantNo.ZMF07020042)Fund of Jiangsu ProvincialKey Laboratory for Science and Technology of Photo-manufacroring (Grant No.GZ-1-02)the NaturalScience Foundation of the Jiangsu Higher EducationInstitutions of China( Grant No. 08KJB430002 ) is gratefully acknowledged.
文摘Mechanics effect of laser thermal stress is a new manufacturing technology, which uses thermal stress by high power laser acted on the surface of metal material to produce stress field. The technologies such as sheet metal formation by laser thermal stress, measurement by laser scratching and measurement by XRD (X-ray diffraction) are formed based on mechanics effects of laser thermal stress. The mechanisms of sheet metal formation by laser thermal stress, measurement by laser scratching and measurement by XRD are analyzed, and the theory of photo-mechanics manufacturing and detecting technologies based on laser thermal stress is originally put forward, whose experiment is primitively researched, and the manufacturing theory by mechanics effects of laser thermal stress is established.
文摘N2O represents a popular oxidizer for hybrid rocket motors for a variety of reasons, including safety, ease of access and self-pressurization. It is often used as a saturated two-phase fluid in these applications to take advantage of self-pressurization. Recent interest in using this oxidizer in regeneratively cooled engines requires a detailed heat transfer process analysis to the coolant, in order to quantify performance. Since the injection of N2O typically takes place in the two-phase region, our study focuses on heat transfer rates in this region, and extends the region to include superheated vapor. This analysis is critical for these cooling applications, because the exothermic decomposition nature of N2O also means that unchecked heating in the superheated region may result in a runaway reaction in the cooling passages. Furthermore, provided that sufficient heat transfer rates are available, N2O is expected to accelerate in the cooling passages due to Rayleigh flow effects much like those of a calorically perfect gas. The proximity of superheated N2O to its saturated vapor curve, at the conditions studied here, makes the suitability of a perfect gas model questionable, but that benchmarks is still useful. This paper presents the development of an experimental apparatus (a "Rayleigh tube"), specifically designed to study this problem, and test the analytical methods developed to model it. Since we focus on the development of the apparatus, the data presented were uses primarily calorically perfect gas surrogates, but the goal is to apply the apparatus and method to N2O. The design and construction of the Rayleigh tube is presented, along with preliminary results with perfect gases. Finally, we present preliminary results on heated N2O flow. Using a simple model for predicted dry-out point, we investigate where superheating may be expected to occur. We present estimates of critical heating and compare them to the heat required to achieve self-decomposition.
文摘The thermal resistances distribution in different wet-bulb temperatures, air velocities and spraying water densities were achieved by the experimental test. The fluctuation of the water film convection and the water-air interfacial thermal resistance were reviewed especially. In the distribution of thermal resistance, the rank of the thermal resistance proportion (from max to min) is air flow heat transfer resistance, heat transfer resistance between refrigerant and wall, water film convection resistance and wall heat transfer resistance. When the heat flux is constant, the total resistance lowers nearly along with the increasing of air flow and water spray density. But there are a best air flow value of 2.98 m/s and a best spray water density of 0.064 kg/(m ·s) respectively, if continue to increase them, condensation performance is not significantly improved any more. The test results are available to improve the evaporative condenser performance and the designing lever.