期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
板坯连铸结晶器内热状态的有限元分析 被引量:2
1
作者 陈志 钱宏智 《首钢科技》 2011年第5期5-11,共7页
考虑铜板结构和连铸坯凝固特性,以二者接触区域为纽带,建立热一力耦合的有限元分析模型,通过耦合计算,总结出了板坯在连铸结晶器中宽窄面方向上的坯壳表面温度、坯壳生长行为及界面气隙状态沿拉坯方向上的变化规律,为分析和解决连... 考虑铜板结构和连铸坯凝固特性,以二者接触区域为纽带,建立热一力耦合的有限元分析模型,通过耦合计算,总结出了板坯在连铸结晶器中宽窄面方向上的坯壳表面温度、坯壳生长行为及界面气隙状态沿拉坯方向上的变化规律,为分析和解决连铸坯在结晶器中产生的质量问题、设计或优化有漏钢预报的测温热电偶布置提供了理论依据。 展开更多
关键词 结晶器铜板 热—力耦合模型 温度分布 凝固进程
在线阅读 下载PDF
Aging Characteristics of Lithium-Ion Battery Under Fast Charging Based on Electrochemical-thermalmechanical Coupling Model
2
作者 Dong-Xu Zuo Pei-Chao Li 《电化学(中英文)》 CAS 北大核心 2024年第9期10-24,共15页
The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multip... The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures. 展开更多
关键词 Lithium-ion battery Aging characteristics Fast charging Electrochemical-thermal-mechanical coupling model
在线阅读 下载PDF
大西高铁聚氨酯固化道床施工中轨道变形控制措施研究 被引量:10
3
作者 郄录朝 王红 +2 位作者 徐旸 许永贤 许良善 《中国铁道科学》 EI CAS CSCD 北大核心 2018年第4期1-7,共7页
聚氨酯固化道床在施工中,材料聚合反应产生体积膨胀,导致轨道变形。由于固化道床施工是在轨道精调完成后进行,控制浇注施工中轨道变形,对于高速铁路轨道的平顺性尤为重要。采用热—力耦合模型对聚氨酯固化材料的膨胀行为进行模拟,并用... 聚氨酯固化道床在施工中,材料聚合反应产生体积膨胀,导致轨道变形。由于固化道床施工是在轨道精调完成后进行,控制浇注施工中轨道变形,对于高速铁路轨道的平顺性尤为重要。采用热—力耦合模型对聚氨酯固化材料的膨胀行为进行模拟,并用膨胀力测试试验结果对热—力耦合模型中的关键参数进行标定。基于验证后的热—力耦合模型,针对大西高铁的实际线路情况,建立大西高铁路基基础聚氨酯固化道床膨胀力时变仿真模型,分析浇注方式、保压荷载幅值及作用点对轨道几何尺寸变化的影响。结果表明,聚氨酯固化道床单点浇注工艺必须采取保压措施,且建议作用点间距为1.2m、4点加载、荷载总量为30kN。现场施工时轨道变形测试结果表明,优化保压设备后,钢轨10m弦高低可控制在2mm以内,满足高速铁路轨道平顺性要求。 展开更多
关键词 大西高铁 聚氨酯固化道床 有限元法 变形控制措施 热—力耦合模型
在线阅读 下载PDF
A thermo-mechanical damage constitutive model for deep rock considering brittleness-ductility transition characteristics
4
作者 FENG Chen-chen WANG Zhi-liang +2 位作者 WANG Jian-guo LU Zhi-tang LI Song-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2379-2392,共14页
This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determi... This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications. 展开更多
关键词 deep rock crack initiation threshold thermo-mechanical coupling statistical damage model distortion energy theory
在线阅读 下载PDF
Numerical studies of effect of tool sizes and pin shapes on friction stir welding of AA2024-T3 alloy 被引量:2
5
作者 张昭 吴奇 张洪武 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3293-3301,共9页
Coupled thermo-mechanical model was used to investigate the effects of the pin diameter, the shoulder diameter and the in conical angle on the heat generations, the material deformations and the energy histories in fr... Coupled thermo-mechanical model was used to investigate the effects of the pin diameter, the shoulder diameter and the in conical angle on the heat generations, the material deformations and the energy histories in friction stir welding(FSW) of AA2024-T3 alloy. Results indicate that the shoulder-plate contact area takes more important contribution to the heat generation than the pin-plate contact area. The increase of the shoulder diameter or the decrease of the pin diameter can lead to the increase of the welding temperature in FSW, but the change of shoulder size is more important. Compared to the cases in FSW of AA6061-T6, the input power is obviously increased in FSW of AA2024-T3 and the ratio of the plastic dissipation to the friction dissipation becomes decreased. 展开更多
关键词 aluminum alloy friction stir welding coupled thermo-mechanical model heat generation energy history
在线阅读 下载PDF
Thermo-mechanical coupled particle model for rock 被引量:7
6
作者 夏明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2367-2379,共13页
A thermo-mechanical coupled particle model for simulation of thermally-induced rock damage based on the particle simulation method was proposed.The simulation results of three verification examples,for which the analy... A thermo-mechanical coupled particle model for simulation of thermally-induced rock damage based on the particle simulation method was proposed.The simulation results of three verification examples,for which the analytical solutions are available,demonstrate the correctness and usefulness of the thermo-mechanical coupled particle model.This model is applied to simulating an application example with two cases:one is temperature-independent elastic modulus and strength,while the other is temperature-dependent elastic modulus and strength.The related simulation results demonstrate that microscopic crack initiation and propagation process with consideration of temperature-independent and temperature-dependent elastic modulus and strength are different and therefore,the corresponding macroscopic failure patterns of rock are also different.On the contrary,considering the temperature-dependent elastic modulus and strength has no or little effect on the heating conduction behavior.Numerical results,which are obtained by using the proposed model with temperature-dependent elastic modulus and strength,agree well with the experimental results.This also reveals that the rock subjected to heating experiences much more cracking than the rock subjected to cooling. 展开更多
关键词 particle simulation method MICROMECHANICS rock fracture thermo-mechanical coupled model
在线阅读 下载PDF
Study on inhomogeneous cooling behavior of extruded profile with unequal and large thicknesses during quenching using thermo-mechanical coupling model 被引量:7
7
作者 Zhi-wen LIU Jie YI +3 位作者 Shi-kang LI Wen-jie NIE Luo-xing LI Guan WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第5期1211-1226,共16页
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanica... The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°. 展开更多
关键词 aluminum profile unequal and large thicknesses water quenching heat transfer coefficient thermo-mechanical coupling model
在线阅读 下载PDF
Coupled thermo-hydro-mechanical-migratory model for dual-porosity medium and numerical analysis 被引量:6
8
作者 张玉军 杨朝帅 《Journal of Central South University》 SCIE EI CAS 2011年第4期1256-1262,共7页
A coupled thermo-hydro-mechanical-migratory model of dual-porosity medium for saturated-unsaturated ubiquitous-joint rockmass was established,in which the stress field and the temperature field were single,but the see... A coupled thermo-hydro-mechanical-migratory model of dual-porosity medium for saturated-unsaturated ubiquitous-joint rockmass was established,in which the stress field and the temperature field were single,but the seepage field and the concentration field were double,and the influences of sets,spaces,angles,continuity ratios,stiffnesses of fractures on the constitutive relationship of the medium were considered.Also,the relative two-dimensional program of finite element method was developed.Taking a hypothetical nuclear waste repository as a calculation example,the case in which the rockmass was unsaturated dual-porosity medium and radioactive nuclide leak was simulated numerically,and the temperatures,negative pore pressures,saturations,flow velocities,nuclide concentrations and principal stresses in the rockmass were investigated.The results show that the negative pore pressures and nuclide concentrations in the porosity and fracture present different changes and distributions.Even though the saturation degree in porosity is only about 1/10 that in fracture,the flow velocity of underground water in fracture is about three times that in porosity because the permeability coefficient of fracture is almost four orders higher than that of porosity.The value of nuclide concentration in fracture is close to that in porosity. 展开更多
关键词 ubiquitous-joint rockmass dual-porosity medium thermo-hydro-mechanical-migratory coupling model numericalanalysis
在线阅读 下载PDF
Cast-rolling force model in solid-liquid cast-rolling bonding(SLCRB) process for fabricating bimetal clad strips 被引量:7
9
作者 Jun-peng ZHANG Hua-gui HUANG +2 位作者 Ri-dong ZHAO Miao FENG Kai MENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期626-635,共10页
Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below t... Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below the kiss point(KP). The deformation resistance of the liquid zone was ignored. Then, the calculation model was derived. A 2D thermal-flow coupled simulation was established to provide a basis for the parameters in the model, and then the rolling forces of the Cu/Al clad strip at different rolling speeds were calculated. Meanwhile, through measurement experiments, the accuracy of the model was verified. The influence of the rolling speed, the substrate strip thickness, and the material on the rolling force was obtained. The results indicate that the rolling force decreases with the increase of the rolling speed and increases with the increase of the thickness and thermal conductivity of the substrate strip. The rolling force is closely related to the KP height. Therefore, the formulation of reasonable process parameters to control the KP height is of great significance to the stability of cast-rolling forming. 展开更多
关键词 bimetal clad strip solid−liquid cast-rolling bonding rolling force calculation model kiss point thermal−flow coupled simulation
在线阅读 下载PDF
Coupled thermal-mechanical analysis of two ITER-like first wall mockups under heat shock of plasma disruptions
10
作者 HUANG ShengHong ZHAO YongQiang WANG WeiHua 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第3期476-487,共12页
The first wall of the fusion reactor is a plasma-facing component and is a key link to maintain the integrity of structure during thermal shock induced by plasma disruptions. Be and W/Cu functionally graded materials ... The first wall of the fusion reactor is a plasma-facing component and is a key link to maintain the integrity of structure during thermal shock induced by plasma disruptions. Be and W/Cu functionally graded materials are two kinds of important plas- ma-facing materials (PFM) of first wall in fusion reactor currently. Previous researches seldom comparatively evaluated the normal servicing and heat shock resistance performance of first walls with those two kinds of PFMs. And also there lacks cou- pled thermal/mechanical analysis on the heat shock process in consideration of multiple thermal/mechanical phenomena, such as material melting, solidification, evaporation, etc., which is significant to further understand the heat shock damage mecha- nism of the first wall with different PFMs. With the aim of learning more detailed mechanical mechanism of thermal shock damage and then improving the thermal shock resistance performance of different first wall designs, the coupled ther- mal/mechanical response of two typical ITER-like first walls with PFM of Be and functionally graded W-Cu respectively un- der the heat shock of 1 2 GW/m2 are computed by the finite element method. Special considerations of elastic-plastic defor- mation, material melting, and solidification are included in numerical models and methods. The mechanical response behaviors of different structures and materials under the normal servicing operation as well as plasma disruption conditions are analyzed and investigated comparatively. The results reveal that heat is mainly deposited on the PFM layer in thc high energy shock pulse induced by plasma disruptions, resulting in complex thermal stress change as well as mechanical itTeversible damage of thermal elastic and plastic expansion, contraction and yielding. Compared with the first wall with Be PFM, which mitigates the damages from heat shock at most only in the PFM layer with cost of whole PFM layer plastic yielding, the first wall with graded W-Cu PFM is demonstrated to be possessed both of higher heat shock resistance performance and normal servicing performance, provided its material gradient and cooling capacity are well optimized under practical loading conditions. 展开更多
关键词 first wall plasma facing component plasma disruptions thermal shock resistance finite element method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部