Agglomerated nanocrystalline ZrO2-8%Y2O3 powder prepared by spray drying was heat-treated in air at temperatures from 1200 ℃ to 1400 ℃ for 2 h. Scanning electron microscopy was used to examine the changes of particl...Agglomerated nanocrystalline ZrO2-8%Y2O3 powder prepared by spray drying was heat-treated in air at temperatures from 1200 ℃ to 1400 ℃ for 2 h. Scanning electron microscopy was used to examine the changes of particle size and morphology, and X-ray diffraction was used to analyze the change of constituent phases before and after the high temperature heat treatment. Nano-particle growth behavior was also investigated. The results show that the major constituent phase of the agglomerated nanocrystalline powder is tetragonal, and non-uniform growth of the nano-particles occurs while the heat treatment temperature reaches 1 300 ℃. This non-uniform growth phenomenon is related with the inhomogeneous distribution of Y2O3 in ZrO2. Nano-particles grow into micron particles through the mechanisms of gradual merging of nano-particles in some areas and sudden merging of nano-particles in other areas.展开更多
The effects of CaO content in the range from 0 to 4.0%, and sintering temperature on the phase composition, relative density and electrical conductivity of 10NiO-NiFe2O4 composites doped with CaO were studied. The res...The effects of CaO content in the range from 0 to 4.0%, and sintering temperature on the phase composition, relative density and electrical conductivity of 10NiO-NiFe2O4 composites doped with CaO were studied. The results show that there is no change of structure for NiO or NiFe2O4; there is apparent oxygen absorbing and releasing behavior during the heating process in air for 10NiO-NiFe2O4 composites. Introduction of CaO can accelerate the densification of 10NiO-NiFe2O4 composites. The maximum value of relative density is 98.75% for composite doped with 2.0% CaO and sintered at 1 200 ℃, which is beyond about 20% for the undoped composites. The sintering activated energy of sample containing 2% CaO decreases by 15.87 kJ/mol, compared with that of the undoped sample.展开更多
Vacuum sintering and ball milling methods were employed in the preparation process of Ti-C grain refine- ment and the ability of refiners with varying ratios of Ti and C to refine ZL111 crystal grains was tested. The ...Vacuum sintering and ball milling methods were employed in the preparation process of Ti-C grain refine- ment and the ability of refiners with varying ratios of Ti and C to refine ZL111 crystal grains was tested. The refinement effect of the Ti-C ratios on tensile strength, elongation percentage, Brinell hardness, pro-eutectoid αAl and the size of the Si phase of ZL111, after modification by rare-earth and strontium nitrate, were studied by means of metallographic examination, SEM and mechanical property tests. The results show that there is an obvious increase in the tensile strength and elongation percentage of refined ZL111 with these new Ti and C refiner compounding powders, while Brinell hardness remained more or less constant. The pro-eutectoid αAl is considerably reduced in size and the Si phase shows a finer and rounder structure. The refiner exhibits a good grain refining performance when the Ti-C ratio is 25:1, for Al crystals can favorably easily form nuclei and grow up along the TiC surface thanks to the TiAl3 generated by sur- plus Ti and Al. The mechanical properties have clearly been improved by the addition of strontium nitrate to ZL111. The effective factors in the modification of mechanical properties of ZL111 are in order of importance: strontium nitrate, Ti-C ratio and rare earth.展开更多
Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding perf...Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding performance. The interaction mechanism between CMC and iron ore particles was analyzed through Zeta potential measurements, adsorption measurements and infrared spectra. The results show that the interaction is chemical adsorption-oriented and the CMC's adsorption performance is related to the properties of CMC as well as the type of iron oxides. CMC has a greater affinity to Fe2O3 than Fe3O4, and CMC with higher relative molecular mass shows a higher adsorption isotherm. Pelletization of practical iron ore concentrates added with CMC further illustrates that CMC with higher relative molecular mass or DS exhibits a better binding performance, which is consistent with the results of adsorption tests.展开更多
The electrocatalytic activity toward oxygen reduction reaction is studied on the perovskite oxide La~_xbrxMnt)3, as preparea under different firing temperatures. X-ray diffraction shows that three different crystal p...The electrocatalytic activity toward oxygen reduction reaction is studied on the perovskite oxide La~_xbrxMnt)3, as preparea under different firing temperatures. X-ray diffraction shows that three different crystal phases featuring tetragonal, cubic, and orthorhombic symmetries form with increasing crystallinities. The electrocatalytic activity is characterized by cyclic voltam- metry and linear sweeping voltammetry for the three phases of La1-xSrxMnO3. We find that the tetragonal phase has the best catalytic activity among the three crystal phases, with the largest onset potential of 0.147 V. The synergistic effect between the volume per unit cell and crystallinity is indicated to account for the good catalytic activity of the tetragonal phase.展开更多
基金Project supported by the Priority Development Program of the Human Resources Ministry of China for Oversea Students
文摘Agglomerated nanocrystalline ZrO2-8%Y2O3 powder prepared by spray drying was heat-treated in air at temperatures from 1200 ℃ to 1400 ℃ for 2 h. Scanning electron microscopy was used to examine the changes of particle size and morphology, and X-ray diffraction was used to analyze the change of constituent phases before and after the high temperature heat treatment. Nano-particle growth behavior was also investigated. The results show that the major constituent phase of the agglomerated nanocrystalline powder is tetragonal, and non-uniform growth of the nano-particles occurs while the heat treatment temperature reaches 1 300 ℃. This non-uniform growth phenomenon is related with the inhomogeneous distribution of Y2O3 in ZrO2. Nano-particles grow into micron particles through the mechanisms of gradual merging of nano-particles in some areas and sudden merging of nano-particles in other areas.
基金Project (2005CB623703) supported by the National Key Fundamental Research and Development Program of ChinaProject (50474051) supported by the National Natural Science Foundation of ChinaProject (03JJY3080) supported by the Natural Science Foundation of Hunan Province, China
文摘The effects of CaO content in the range from 0 to 4.0%, and sintering temperature on the phase composition, relative density and electrical conductivity of 10NiO-NiFe2O4 composites doped with CaO were studied. The results show that there is no change of structure for NiO or NiFe2O4; there is apparent oxygen absorbing and releasing behavior during the heating process in air for 10NiO-NiFe2O4 composites. Introduction of CaO can accelerate the densification of 10NiO-NiFe2O4 composites. The maximum value of relative density is 98.75% for composite doped with 2.0% CaO and sintered at 1 200 ℃, which is beyond about 20% for the undoped composites. The sintering activated energy of sample containing 2% CaO decreases by 15.87 kJ/mol, compared with that of the undoped sample.
文摘Vacuum sintering and ball milling methods were employed in the preparation process of Ti-C grain refine- ment and the ability of refiners with varying ratios of Ti and C to refine ZL111 crystal grains was tested. The refinement effect of the Ti-C ratios on tensile strength, elongation percentage, Brinell hardness, pro-eutectoid αAl and the size of the Si phase of ZL111, after modification by rare-earth and strontium nitrate, were studied by means of metallographic examination, SEM and mechanical property tests. The results show that there is an obvious increase in the tensile strength and elongation percentage of refined ZL111 with these new Ti and C refiner compounding powders, while Brinell hardness remained more or less constant. The pro-eutectoid αAl is considerably reduced in size and the Si phase shows a finer and rounder structure. The refiner exhibits a good grain refining performance when the Ti-C ratio is 25:1, for Al crystals can favorably easily form nuclei and grow up along the TiC surface thanks to the TiAl3 generated by sur- plus Ti and Al. The mechanical properties have clearly been improved by the addition of strontium nitrate to ZL111. The effective factors in the modification of mechanical properties of ZL111 are in order of importance: strontium nitrate, Ti-C ratio and rare earth.
基金Project(2012zzts101)supported by the Fundamental Research Funds for the Central Universities,China
文摘Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding performance. The interaction mechanism between CMC and iron ore particles was analyzed through Zeta potential measurements, adsorption measurements and infrared spectra. The results show that the interaction is chemical adsorption-oriented and the CMC's adsorption performance is related to the properties of CMC as well as the type of iron oxides. CMC has a greater affinity to Fe2O3 than Fe3O4, and CMC with higher relative molecular mass shows a higher adsorption isotherm. Pelletization of practical iron ore concentrates added with CMC further illustrates that CMC with higher relative molecular mass or DS exhibits a better binding performance, which is consistent with the results of adsorption tests.
基金supported by the National Basic Research Program of China(2012CB215504)the National High Technology Research and Development Program of China(2009AA034401)the National Natural Science Foundation of China(50632050)
文摘The electrocatalytic activity toward oxygen reduction reaction is studied on the perovskite oxide La~_xbrxMnt)3, as preparea under different firing temperatures. X-ray diffraction shows that three different crystal phases featuring tetragonal, cubic, and orthorhombic symmetries form with increasing crystallinities. The electrocatalytic activity is characterized by cyclic voltam- metry and linear sweeping voltammetry for the three phases of La1-xSrxMnO3. We find that the tetragonal phase has the best catalytic activity among the three crystal phases, with the largest onset potential of 0.147 V. The synergistic effect between the volume per unit cell and crystallinity is indicated to account for the good catalytic activity of the tetragonal phase.