Understanding the effects of organic acids (OA) on the transformation of Fe and Mn to surface water from the weathering coal gangue is of great benefit to risk assessment and remediation strategies for contaminated ...Understanding the effects of organic acids (OA) on the transformation of Fe and Mn to surface water from the weathering coal gangue is of great benefit to risk assessment and remediation strategies for contaminated water and soil. Based on the investigation on surface water in the central coal districts of the Guizhou Province, 18 water samples were collected for heavy metal analysis. The results indicated that the pH value of surface water is low (3.11-4.92), and Fe concentration (1.31-5.55 mg L-1) and Mn concentration (1.90-5.71 mg L^-1) were, on average, 10.86 and 34.33 times the limit of Surface Water Quality Standards, respectively. In order to evaluate the effects of the OA on the dissolution of Fe and Mn from the weath- ering coal gangue, column elution and batch leaching experiments were conducted. The results show that the low molecular weight of organic acids (LMWOAs, i.e., oxalic, tartaric, malic and citric acids) and fulvic acids signifi- cantly accelerated the dissolution of Fe and Mn; in addi- tion, when the concentration of OA reached 25 mmol L-1, the concentrations of Fe, and Mn were 1.14-67.08 and 1.11-2.32 times as high as those in 0.5 mmol L-1OA, respectively. Furthermore, the migration of Fe and Mn was significantly influenced by the pH and Eh, especially for Fe; the ion Mn was dissolved from the gangue more easily than the ion Fe in the column leaching, which was contrary to the results of batch leaching.展开更多
This study aims to investigate methyl tert-butyl ether(MTBE) dissolution in saturated porous media.A series of1 D column experiments were conducted in laboratory to obtain MTBE dissolution data with different groundwa...This study aims to investigate methyl tert-butyl ether(MTBE) dissolution in saturated porous media.A series of1 D column experiments were conducted in laboratory to obtain MTBE dissolution data with different groundwater velocity,initial MTBE saturation and grain size of porous medium,and in the presence of other nonaqueous liquids.Results indicate that higher groundwater velocity increases MTBE dissolution rate and higher initial MTBE saturation reduces effective permeability to slow MTBE dissolution rate.Smaller grain size medium gives higher MTBE dissolution rate because of higher permeability.The addition of trichloroethylene enhances MTBE dissolution,with an optimal mass ratio of 10:2,while the presence of p-xylene prolongs complete dissolution of MTBE.Mass transfer correlations are developed for MTBE dissolution rate based on the degree of MTBE saturation Sn.Mass transfer rate is characterized by Re' with a high exponent for 0.3000<Sn<0.5482,while it is related to medium grain size and Sn for Sn≤0.3000.展开更多
Most economically important tungsten(W)deposits are of magmatic-hydrothermal origin.The species and partitioning of W during fluid exsolution,considered to be the controlling factors for the formation of ore deposits,...Most economically important tungsten(W)deposits are of magmatic-hydrothermal origin.The species and partitioning of W during fluid exsolution,considered to be the controlling factors for the formation of ore deposits,are thus of great significance to investigate.However,this issue has not been well addressed mainly due to the significant difference in reported partition coefficients(e.g.,from strongly incompatible to strongly compatible)between fluid and melt(D_(W)^(fluid/melt)).Here,we used an in situ Raman spectroscopic approach to describe the W speciation,and to quantitatively determine the Dfluid/melt of individual and total W species in granite melts and coexisting Na2WO4 solutions at elevated temperatures(T;700–800C)and pressures(P;0.35–1.08 GPa).Results show that WO_(4)^(2-)and HWO4are predominant W species,and the fractions of these two species are similar in melt and coexisting fluid.The partitioning behaviors of WO_(4)^(2-)and HWO4are comparable,exhibiting strong enrichment in the fluid.The total DW fluid/melt ranges from 8.6 to 37.1.Specifically,DW fluid/melt decreases with rising T–P,indicating that shallow exsolution favors enrichment of W in evolved fluids.Furthermore,Rayleigh fractionation modeling based on the obtained D_(W)^(fluid/melt)data was used to describe the fluid exsolution processes.Our results strongly support that fluid exsolution can serve as an important mechanism to generate W-rich oreforming fluids.This study also indicates that in situ approach can be used to further investigate the geochemical behavior of ore-forming elements during the magmatic-hydrothermal transition,especially for rare metals associated with granite and pegmatite.展开更多
基金sponsored by The Innovative Talent Team Construction Project for Science and Technology of Guizhou Province (Project Number [2012]4005)
文摘Understanding the effects of organic acids (OA) on the transformation of Fe and Mn to surface water from the weathering coal gangue is of great benefit to risk assessment and remediation strategies for contaminated water and soil. Based on the investigation on surface water in the central coal districts of the Guizhou Province, 18 water samples were collected for heavy metal analysis. The results indicated that the pH value of surface water is low (3.11-4.92), and Fe concentration (1.31-5.55 mg L-1) and Mn concentration (1.90-5.71 mg L^-1) were, on average, 10.86 and 34.33 times the limit of Surface Water Quality Standards, respectively. In order to evaluate the effects of the OA on the dissolution of Fe and Mn from the weath- ering coal gangue, column elution and batch leaching experiments were conducted. The results show that the low molecular weight of organic acids (LMWOAs, i.e., oxalic, tartaric, malic and citric acids) and fulvic acids signifi- cantly accelerated the dissolution of Fe and Mn; in addi- tion, when the concentration of OA reached 25 mmol L-1, the concentrations of Fe, and Mn were 1.14-67.08 and 1.11-2.32 times as high as those in 0.5 mmol L-1OA, respectively. Furthermore, the migration of Fe and Mn was significantly influenced by the pH and Eh, especially for Fe; the ion Mn was dissolved from the gangue more easily than the ion Fe in the column leaching, which was contrary to the results of batch leaching.
基金Supported by the National Natural Science Foundation of China(41201497)
文摘This study aims to investigate methyl tert-butyl ether(MTBE) dissolution in saturated porous media.A series of1 D column experiments were conducted in laboratory to obtain MTBE dissolution data with different groundwater velocity,initial MTBE saturation and grain size of porous medium,and in the presence of other nonaqueous liquids.Results indicate that higher groundwater velocity increases MTBE dissolution rate and higher initial MTBE saturation reduces effective permeability to slow MTBE dissolution rate.Smaller grain size medium gives higher MTBE dissolution rate because of higher permeability.The addition of trichloroethylene enhances MTBE dissolution,with an optimal mass ratio of 10:2,while the presence of p-xylene prolongs complete dissolution of MTBE.Mass transfer correlations are developed for MTBE dissolution rate based on the degree of MTBE saturation Sn.Mass transfer rate is characterized by Re' with a high exponent for 0.3000<Sn<0.5482,while it is related to medium grain size and Sn for Sn≤0.3000.
基金supported by the National Natural Science Foundation of China(41922023,41830428,42173038,41973055,and 42130109)the Research Funds for the Frontiers Science Center for Critical Earth Material Cycling(Nanjing University,China)the Fundamental Research Funds for the Central Universities,China(2022300192).
文摘Most economically important tungsten(W)deposits are of magmatic-hydrothermal origin.The species and partitioning of W during fluid exsolution,considered to be the controlling factors for the formation of ore deposits,are thus of great significance to investigate.However,this issue has not been well addressed mainly due to the significant difference in reported partition coefficients(e.g.,from strongly incompatible to strongly compatible)between fluid and melt(D_(W)^(fluid/melt)).Here,we used an in situ Raman spectroscopic approach to describe the W speciation,and to quantitatively determine the Dfluid/melt of individual and total W species in granite melts and coexisting Na2WO4 solutions at elevated temperatures(T;700–800C)and pressures(P;0.35–1.08 GPa).Results show that WO_(4)^(2-)and HWO4are predominant W species,and the fractions of these two species are similar in melt and coexisting fluid.The partitioning behaviors of WO_(4)^(2-)and HWO4are comparable,exhibiting strong enrichment in the fluid.The total DW fluid/melt ranges from 8.6 to 37.1.Specifically,DW fluid/melt decreases with rising T–P,indicating that shallow exsolution favors enrichment of W in evolved fluids.Furthermore,Rayleigh fractionation modeling based on the obtained D_(W)^(fluid/melt)data was used to describe the fluid exsolution processes.Our results strongly support that fluid exsolution can serve as an important mechanism to generate W-rich oreforming fluids.This study also indicates that in situ approach can be used to further investigate the geochemical behavior of ore-forming elements during the magmatic-hydrothermal transition,especially for rare metals associated with granite and pegmatite.