在深度强化学习中,深度Q网络算法存在严重高估动作值问题,使得智能体的表现不尽人意.尽管深度双Q网络和竞争网络结构可以部分缓解高估带来的影响,但引入双Q网络的同时,有时也会低估动作值.本文提出了一种基于权重值的竞争深度双Q网络算...在深度强化学习中,深度Q网络算法存在严重高估动作值问题,使得智能体的表现不尽人意.尽管深度双Q网络和竞争网络结构可以部分缓解高估带来的影响,但引入双Q网络的同时,有时也会低估动作值.本文提出了一种基于权重值的竞争深度双Q网络算法(Weighted Dueling Double Deep Q-Network,WD3QN),把改进的双估计器及竞争网络结构结合至深度Q网络中,将学习到的可能动作值进行加权产生最终动作值,有效减少估计误差.最后,将算法应用于Open AI Gym平台上的CartPole经典控制问题,仿真结果显示:与已有算法对比,本算法有更好的学习效果,收敛性和训练速度均有提升.展开更多
船舶在自动靠泊过程中会受到风、浪、流和岸壁效应等因素的影响,故需要精确的路径规划方法防止靠泊失败。针对全驱动船舶靠泊过程的基于双深度Q网络(double deep Q network,DDQN)算法,设计了一种船舶自动靠泊路径规划方法。首先建立船...船舶在自动靠泊过程中会受到风、浪、流和岸壁效应等因素的影响,故需要精确的路径规划方法防止靠泊失败。针对全驱动船舶靠泊过程的基于双深度Q网络(double deep Q network,DDQN)算法,设计了一种船舶自动靠泊路径规划方法。首先建立船舶三自由度模型,然后通过将距离、航向、推力、时间和碰撞作为奖励或惩罚,改进奖励函数。随后引入DDQN来学习动作奖励模型,并使用学习结果来操纵船舶运动。通过追求更高的奖励值,船舶可以自行找到最优的靠泊路径。实验结果表明,在不同水流速度下,船舶都可以在完成靠泊的同时减小时间和推力,并且在相同水流速度下,DDQN算法与Q-learning、SARSA(state action reward state action)、深度Q网络(deep Q network,DQN)等算法相比,靠泊过程推力分别减小了241.940、234.614、80.202 N,且时间仅为252.485 s。展开更多
文摘在深度强化学习中,深度Q网络算法存在严重高估动作值问题,使得智能体的表现不尽人意.尽管深度双Q网络和竞争网络结构可以部分缓解高估带来的影响,但引入双Q网络的同时,有时也会低估动作值.本文提出了一种基于权重值的竞争深度双Q网络算法(Weighted Dueling Double Deep Q-Network,WD3QN),把改进的双估计器及竞争网络结构结合至深度Q网络中,将学习到的可能动作值进行加权产生最终动作值,有效减少估计误差.最后,将算法应用于Open AI Gym平台上的CartPole经典控制问题,仿真结果显示:与已有算法对比,本算法有更好的学习效果,收敛性和训练速度均有提升.
文摘针对海上船舶自主避碰决策中深度Q网络(deep Q-network,DQN)算法的高估和收敛性差的问题,提出一种融合噪声网络的裁剪双DQN(double DQN,DDQN)算法,记为NoisyNet-CDDQN算法。该算法采用裁剪双Q值的方式减小DQN算法的高估问题,并通过引入噪声网络来增强算法的稳定性以解决DQN算法收敛性差的问题。充分考虑船舶运动数学模型和船舶领域模型,并在奖励函数设计中考虑到偏航、《国际海上避碰规则》(International Regulations for Preventing Collisions at Sea,COLREGs)等要素。多会遇场景仿真实验证明,本文所提出的NoisyNet-CDDQN算法相较于融合噪声网络的DQN算法在收敛速度上提升了27.27%,相较于DDQN算法提升了54.55%,相较于DQN算法提升了87.27%,并且船舶自主避碰决策行为符合COLREGs,可为船舶的自主避碰提供参考。