期刊文献+
共找到613篇文章
< 1 2 31 >
每页显示 20 50 100
基于图卷积神经网络−双向门控循环单元及注意力机制的风电功率短期预测模型
1
作者 张光昊 张新燕 王朋凯 《现代电力》 北大核心 2025年第2期201-208,共8页
风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预... 风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预测模型。该模型以数值天气预报数据(numerical weather prediction,NWP)和风电功率历史数据作为输入,首先利用皮尔逊相关性分析筛选特征,然后借助残差连接的图卷积神经网络(graph convolutional neural network,GCN)和图学习层挖掘空间特征关系,接着采用双向门控循环单元(bidirectional gated recurrent unit,BiGRU)挖掘历史数据的时序特征,最后引入注意力机制(attentional mechanisms,AM)分配权重,实现风电功率短期预测。以某风电场实测数据为例进行算例分析,实验结果表明,该文方法在单步及多步预测中相比其他方法有更好的预测精度。 展开更多
关键词 风电功率预测 混合深度神经网络 图卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于门控循环单元的日志异常检测方法
2
作者 杨文馨 陈伟 武于新 《软件工程》 2025年第1期64-68,共5页
针对现有日志特征提取不充分且存在噪音等问题,提出一种基于门控循环单元(Gate Recurrent Unit,GRU)的日志异常检测方法。该方法使用BERT(Bidirectional Encoder Representations from Transfomers)提取日志的语义特征,然后利用事件逆... 针对现有日志特征提取不充分且存在噪音等问题,提出一种基于门控循环单元(Gate Recurrent Unit,GRU)的日志异常检测方法。该方法使用BERT(Bidirectional Encoder Representations from Transfomers)提取日志的语义特征,然后利用事件逆频率加权对特征进行优化。采用基于注意力和门控循环单元的模型进行日志异常检测,以减少日志噪声对检测结果的影响。在2个真实的数据集上的实验结果表明,该方法在异常检测任务中表现出色,F1值平均达到0.98,与基准方法DeepLog(Deep Log Anomaly Detection)相比,分别提高了3.36%和11.0%。 展开更多
关键词 日志异常检测 门控循环单元 注意力机制 双向编码语义解析
在线阅读 下载PDF
ABMIL-BiGRU:基于双向门控循环注意力多示例学习的乳腺癌淋巴结转移可解释性预测
3
作者 李波 杨艳斌 +1 位作者 李帅 梁美彦 《中国医学物理学杂志》 2025年第2期175-183,共9页
针对千兆像素乳腺癌病理全切片图像分类和病灶定位的问题,提出基于双向门控循环注意力多示例学习(ABMIL-BiGRU)模型对H&E染色的乳腺癌淋巴结转移图像进行可解释性预测。该方法通过两个正交的双向门控循环单元分别建立图像块行方向... 针对千兆像素乳腺癌病理全切片图像分类和病灶定位的问题,提出基于双向门控循环注意力多示例学习(ABMIL-BiGRU)模型对H&E染色的乳腺癌淋巴结转移图像进行可解释性预测。该方法通过两个正交的双向门控循环单元分别建立图像块行方向和列方向特征间的长短距离依赖关系,从而实现图像块空间位置和上下文信息的嵌入,再通过注意力多示例池化来量化每个特征表示的注意力分数,从而实现全切片图像级特征聚合并生成可解释性热图。研究结果表明,ABMIL-BiGRU模型在乳腺癌转移数据集上的平均准确率和AUC值分别为0.9186和0.9467,不仅实现全切片图像的高精度预测和感兴趣区域定位,而且还提供图像块级别的人类可解释的特征,该模型在一定程度上解决了“准确性-可解释性权衡”问题,其优越性能为计算机辅助诊断和智能系统的临床应用提供新的范式。 展开更多
关键词 乳腺癌 淋巴结转移 精准诊断 双向门控循环单元 上下文信息 可解释性 全切片图像
在线阅读 下载PDF
基于多头注意力与双向门控循环单元的数据无损压缩方法
4
作者 鄂驰 胡潇 +2 位作者 刘小康 张尚军 熊小舟 《计算机科学与应用》 2024年第2期517-526,共10页
为解决数据归档存储场景中出现的物理存储成本增长和数据库内存紧张等问题,本文提出一种基于注意力机制与双向门控循环单元的数据无损压缩方法,采用Transformer和双向门控循环单元作为概率预测器,输出数据流的条件概率分布,结合自适应... 为解决数据归档存储场景中出现的物理存储成本增长和数据库内存紧张等问题,本文提出一种基于注意力机制与双向门控循环单元的数据无损压缩方法,采用Transformer和双向门控循环单元作为概率预测器,输出数据流的条件概率分布,结合自适应算术编码器对数据进行压缩。实验对比结果表明,本文所提方法相较于算术编码和基于字典模型的LZW这两种传统无损压缩方法,压缩率分别平均提升约28.8%和7.8%;相较于Cmix v19和NNCP两种深度学习方法,平均压缩率分别降低0.4%和0.2%,但平均压缩时间分别约为其5.1%和39.4%。 展开更多
关键词 数据无损压缩 双向门控循环单元 TRANSFORMER
在线阅读 下载PDF
多特征融合的双向门控循环单元情感倾向研究
5
作者 蹇文成 葛欣 聂绍良 《中国电子商务》 2024年第3期6-11,共6页
通过对产品评论爆炸式增长进行情感分析,不仅可以为潜在消费者提供购买决策,还可以指导企业不断优化商业决策,提高产品质量。文章对现有神经网络情感分析模型进行研究,提出了一种新的情感分析模型——多特征融合双向门控循环单元(MFF-Bi... 通过对产品评论爆炸式增长进行情感分析,不仅可以为潜在消费者提供购买决策,还可以指导企业不断优化商业决策,提高产品质量。文章对现有神经网络情感分析模型进行研究,提出了一种新的情感分析模型——多特征融合双向门控循环单元(MFF-BiGRU)。首先,MFF-BiGRU生成不同的特征通道,以充分了解产品评论的情感信息。然后将通道分别输入到BiGRU网络中,使模型能够从不同的角度学习句子中的情感特征信息,并探索句子不同方面的隐藏信息。通过层归一化提取不同BiGRU网络输出结果中关于情感特征的最重要信息。Merge层通过连接操作来融合提取的重要信息。最后,Softmax层最终对最后一层的输出进行分类。实验结果表明,在京东食品评论数据集上,MFF-BiGRU的性能优于传统的神经网络模型和经典分类器。 展开更多
关键词 商品评论 多特征融合双向门控循环单元 情感分析 深度学习 多分类
在线阅读 下载PDF
基于二次分解双向门控单元新型电力系统超短期负荷预测 被引量:2
6
作者 王德文 安涵 《电力科学与工程》 2024年第3期1-9,共9页
在新型电力系统中,电力负荷随机性和波动性较强,现有预测方法难以对其实现高精度预测。为此,提出一种基于二次分解和双向门控循环单元的超短期负荷预测模型。首先,针对电力负荷的强随机性和强波动性,利用自适应噪声完备经验模态分解对... 在新型电力系统中,电力负荷随机性和波动性较强,现有预测方法难以对其实现高精度预测。为此,提出一种基于二次分解和双向门控循环单元的超短期负荷预测模型。首先,针对电力负荷的强随机性和强波动性,利用自适应噪声完备经验模态分解对电力负荷历史序列进行初步分解,使负荷序列更加平稳。随后,对初步分解得到的强非平稳分量运用连续变分模态分解进行二次分解,降低其预测难度。最后,为充分学习电力负荷的时序特征,在预测过程构建基于双向门控循环单元的超短期电力负荷预测模型。实验结果表明,该模型相较于现有优秀预测模型有更高的预测精度。 展开更多
关键词 新型电力系统 超短期负荷 负荷预测 二次分解 双向门控循环单元
在线阅读 下载PDF
基于深度门控循环单元神经网络的刀具磨损状态实时监测方法 被引量:15
7
作者 陈启鹏 谢庆生 +3 位作者 袁庆霓 黄海松 魏琴 李宜汀 《计算机集成制造系统》 EI CSCD 北大核心 2020年第7期1782-1793,共12页
为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改... 为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改善算法的鲁棒性;然后,利用卷积神经网络(CNN)从时序信号输入中自适应地提取特征,构建深度双向门控循环单元(BiGRU)神经网络学习特征向量间的时序信息,并将Attention机制的思想引入其中,自适应地感知对磨损状态分类结果有关联的网络权重,并对其进行合理分配,避免因人工提取特征带来的复杂性和局限性。实验结果表明,所提方法能够对传感器采集的原始数据实时准确地预测刀具磨损状态,在识别精度和泛化能力上均达到了较好的效果,为实际工业场景下的刀具磨损状态监测提供了新的思路。 展开更多
关键词 刀具磨损状态 实时监测 小波去噪 卷积神经网络 双向门控循环单元 Attention机制
在线阅读 下载PDF
基于GRU门控循环单元的火电AGC数据建模及应用 被引量:1
8
作者 董建宁 张淇钧 +5 位作者 陈衡 冯福媛 潘佩媛 徐钢 王修彦 刘彤 《洁净煤技术》 CAS CSCD 北大核心 2024年第S01期406-413,共8页
为响应国家“双碳”目标,提高火电机组的运行灵活性,使用数学模型或仿真软件对火电AGC变负荷过程进行分析研究。而深度学习作为最火热的研究方法之一,将其应用于传统火电机组的大量数据集,可快速、轻便构建更具针对性和准确性的火电机组... 为响应国家“双碳”目标,提高火电机组的运行灵活性,使用数学模型或仿真软件对火电AGC变负荷过程进行分析研究。而深度学习作为最火热的研究方法之一,将其应用于传统火电机组的大量数据集,可快速、轻便构建更具针对性和准确性的火电机组AGC变负荷数据模型,对火电机组动态性能进行分析优化。对比不同循环神经网络框架,选择表现最优的GRU门控循环单元对火电机组变负荷过程进行数据建模,并通过遍历法提高模型精度,并结合自身数据集和物理仿真模型进行数据模型的多重验证。结果表明,基于门控循环单元搭建的数据模型可模拟火电机组在实际变负荷过程中的运行状况,并可模拟不同负荷指令组下的AGC变负荷过程,从而对最佳负荷指令组进行优化。根据模拟结果,在机组75%~100%THA升负荷过程中,调节精度提高了28.4%,在100%~75%THA降负荷过程中,调节精度提高了17.8%。 展开更多
关键词 自动发电控制 深度学习 门控循环单元 数据模型 负荷指令
在线阅读 下载PDF
八度卷积和双向门控循环单元结合的X光安检图像分类 被引量:3
9
作者 吴海滨 魏喜盈 +1 位作者 王爱丽 岩堀祐之 《中国光学》 EI CAS CSCD 北大核心 2020年第5期1138-1146,共9页
针对主动视觉安检方法准确率低、速度慢,不适用于实时交通安检的问题,提出了八度卷积(OctConv)和注意力机制双向门控循环单元(GRU)神经网络相结合的X光安检图像分类方法。首先,利用八度卷积代替传统卷积,对输入的特征向量进行高低分频,... 针对主动视觉安检方法准确率低、速度慢,不适用于实时交通安检的问题,提出了八度卷积(OctConv)和注意力机制双向门控循环单元(GRU)神经网络相结合的X光安检图像分类方法。首先,利用八度卷积代替传统卷积,对输入的特征向量进行高低分频,并降低低频特征的分辨率,在有效提取X光安检图像特征的同时,减少了空间冗余。其次,通过注意力机制双向GRU,动态学习调整特征权重,提高危险品分类准确率。最后,在通用SIXRay数据集上的实验表明,对8000幅测试样本的整体分类准确率(ACC)、特征曲线下方面积(AUC)、正类分类准确率(PRE)分别为98.73%、91.39%、85.44%,检测时间为36.80 s。相对于目前主流模型,本文方法有效提高了X光安检图像危险品分类的准确率和速度。 展开更多
关键词 X光安检图像 八度卷积 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于变分模态分解的卷积神经网络−双向门控循环单元−多元线性回归多频组合短期电力负荷预测 被引量:16
10
作者 方娜 李俊晓 +1 位作者 陈浩 李新新 《现代电力》 北大核心 2022年第4期441-448,共8页
为了有效提高电力负荷预测精度,针对电力负荷非线性、非平稳性、时序性的特点,提出了一种卷积神经网络(convolutional neural networks,CNN)、双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和多元线性回归(multiple line... 为了有效提高电力负荷预测精度,针对电力负荷非线性、非平稳性、时序性的特点,提出了一种卷积神经网络(convolutional neural networks,CNN)、双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和多元线性回归(multiple linear regression,MLR)混合的多频组合短期电力负荷预测模型。该模型先利用关联度分析得到相似日,并将其负荷组成新的数据序列,同时使用变分模态分解(variational mode decomposition,VMD)将该数据序列进行分解,并重构成高低2种频率。对于高频分量,使用CNN-BiGRU模型进行预测;低频部分则使用MLR。最后将各个模型得出的预测结果叠加,得到最终预测结果。以2006年澳大利亚真实数据为例,进行短期电力负荷预测。仿真结果表明,相比于其他网络模型,该模型具有较高的预测精度和拟合能力,是一种有效的短期负荷预测方法。 展开更多
关键词 变分模态分解 卷积神经网络 双向门控循环单元 多元线性回归 负荷预测
在线阅读 下载PDF
基于深度双向门控循环神经网络的制粉系统故障预警 被引量:3
11
作者 赵征 丁建平 《动力工程学报》 CAS CSCD 北大核心 2023年第5期598-605,共8页
为构建鲁棒性较强的状态估计模型,结合堆叠自编码器思想,提出一种基于深度双向门控循环神经网络的制粉系统状态估计及故障预警方法。首先,选取制粉系统正常运行状态变量历史数据作为深度双向门控循环神经网络的训练输入,然后利用网络强... 为构建鲁棒性较强的状态估计模型,结合堆叠自编码器思想,提出一种基于深度双向门控循环神经网络的制粉系统状态估计及故障预警方法。首先,选取制粉系统正常运行状态变量历史数据作为深度双向门控循环神经网络的训练输入,然后利用网络强大的特征学习能力,建立制粉系统正常状态估计模型。采用滑动窗口法构建制粉系统状态监测指标,确定指标阈值,利用火电厂制粉系统历史运行数据进行仿真。结果表明:相比于其他方法,深度双向门控循环神经网络模型具有更好的估计性能,且能够在故障发生前及时发出预警信息,达到早期故障诊断的目的。 展开更多
关键词 制粉系统 深度学习 双向门控循环神经网络 自编码器 故障预警
在线阅读 下载PDF
基于互补集合经验模态分解和改进麻雀搜索算法优化双向门控循环单元的交通流组合预测模型 被引量:2
12
作者 殷礼胜 刘攀 +3 位作者 孙双晨 吴洋洋 施成 何怡刚 《电子与信息学报》 EI CSCD 北大核心 2023年第12期4499-4508,共10页
该文针对短时交通流预测过程呈现的非线性、非平稳性及时序相关性特征,为提升预测的精度及收敛速度,提出一种基于互补集合经验模态分解(CEEMD)和改进麻雀搜索算法(ISSA)优化双向门控循环单元(BiGRU)的组合预测模型。首先,考虑到端点飞... 该文针对短时交通流预测过程呈现的非线性、非平稳性及时序相关性特征,为提升预测的精度及收敛速度,提出一种基于互补集合经验模态分解(CEEMD)和改进麻雀搜索算法(ISSA)优化双向门控循环单元(BiGRU)的组合预测模型。首先,考虑到端点飞翼问题,通过改进CEEMD算法将交通流量序列分解为体现路网交通趋势性、周期性及随机性的本征模态函数(IMF)分量,有效提取了其中的先验特征;随后,利用BiGRU网络挖掘交通流量序列中的时序相关性特征,为避免局部最优,并提高麻雀搜索算法(SSA)全局搜索及局部开发能力,采用ISSA对BiGRU网络权值参数迭代择优。实验结果表明,该组合预测模型中各组件对提高预测精度均起到正向作用,同时在不同交通流量数据集下的预测性能较对比算法均更优,展现了精准、快速的预测表现以及良好的泛化能力。 展开更多
关键词 短时交通流预测 互补集合经验模态分解 麻雀搜索算法 双向门控循环单元 边界局部特征延拓
在线阅读 下载PDF
基于多源特征和双向门控循环单元的抗高血压肽识别
13
作者 贺兴时 李锦 梁芸芸 《西安工程大学学报》 CAS 2023年第3期109-114,123,共7页
为了开发快速、高效和智能的抗高血压肽(anti-hypertensive peptides,AHTPs)识别工具,针对AHTPs的识别,构建基于多源特征和深度学习的识别模型。利用新增强分组氨基酸组分(novel enhanced grouped amino acid composition,NEGAAC)、约... 为了开发快速、高效和智能的抗高血压肽(anti-hypertensive peptides,AHTPs)识别工具,针对AHTPs的识别,构建基于多源特征和深度学习的识别模型。利用新增强分组氨基酸组分(novel enhanced grouped amino acid composition,NEGAAC)、约简的二肽组分(reduced dipeptide composition,RDPC)、二肽频率与预期平均值之间的偏差(dipeptide deviation from expected mean,DDE)、氨基酸物理化学性质的距离变换(amino acid physicochemical properties-based distance transformation,AAP-DT)和BLOSUM62编码对肽序列进行特征提取。采用双向门控循环单元(bidirectional gated recurrent units,BiGRU)对蛋白质特征进行深度学习,进而有效识别AHTPs。在10-折交叉验证下,基于多源特征和深度学习的识别模型在基准数据集和独立数据集上的识别精度达到96.78%和98.72%。 展开更多
关键词 抗高血压肽 多源特征 深度学习 双向门控循环单元 蛋白质
在线阅读 下载PDF
基于双向门控变分编码回归网络的涡扇发动机剩余寿命预测
14
作者 徐浩 王波 +2 位作者 张猛 杨文龙 汪超 《计算机集成制造系统》 北大核心 2025年第2期616-626,共11页
针对涡扇发动机运行工况复杂,难以提取高维度、多参数监测数据的退化时序特征,从而影响模型预测性能的问题,提出一种基于双向门控变分编码回归网络的剩余使用寿命预测模型。首先在变分编码器(VAE)网络的编码端引入双向门控循环单元网络(... 针对涡扇发动机运行工况复杂,难以提取高维度、多参数监测数据的退化时序特征,从而影响模型预测性能的问题,提出一种基于双向门控变分编码回归网络的剩余使用寿命预测模型。首先在变分编码器(VAE)网络的编码端引入双向门控循环单元网络(BiGRU),充分挖掘多维度退化数据中的隐藏时序特征;其次重构变分编码器模型的解码器为回归网络,利用变分编码器潜在空间中的退化特征训练回归网络,并在损失函数中联合KL散度和回归误差来提高剩余使用寿命预测精度。为验证所提预测模型的高效性,在公开涡扇发动机数据集上与其他预测模型进行对比,验证了所提模型具有更优的预测精度。 展开更多
关键词 剩余寿命预测 变分编码器 双向门控循环单元网络 回归网络 涡扇发动机
在线阅读 下载PDF
基于门控循环单元强化学习的晶圆光刻区实时调度方法研究
15
作者 吴立辉 石津铭 +1 位作者 金克山 张洁 《工业工程》 2024年第3期12-21,30,共11页
为求解具有动态性、实时性、多约束、多目标特点的晶圆光刻区调度问题,提出一种基于门控循环单元强化学习的晶圆光刻区实时调度方法。设计引入门控循环单元学习光刻区历史调度决策与状态的时序信息,为双深度强化学习模型提供辅助决策信... 为求解具有动态性、实时性、多约束、多目标特点的晶圆光刻区调度问题,提出一种基于门控循环单元强化学习的晶圆光刻区实时调度方法。设计引入门控循环单元学习光刻区历史调度决策与状态的时序信息,为双深度强化学习模型提供辅助决策信息;设计双深度强化学习模型的输入状态空间、输出动作集,并面向晶圆最小化最大完工时间和晶圆准时交货率指标设计多目标奖励函数,为智能体优化调度输出;设计设备专用性约束与掩模版约束的解约束规则与调度方法相结合,提高调度方案实施的实用性。通过某晶圆制造企业实际算例,将该方法与传统双深度强化学习和光刻区启发式规则方法比较,该方法均为最优,证明了其解决此问题的有效性。 展开更多
关键词 晶圆制造系统 光刻区调度 深度强化学习 门控循环单元(GRU) 多目标
在线阅读 下载PDF
基于深度门控循环单元神经网络的短期风功率预测模型 被引量:102
16
作者 牛哲文 余泽远 +1 位作者 李波 唐文虎 《电力自动化设备》 EI CSCD 北大核心 2018年第5期36-42,共7页
随着新能源的不断发展,大量大容量风电机组并入电网运行,给电网的安全可靠运行以及风力发电的可持续发展都提出了新的挑战。提出一种风功率预测模型,该模型以风电场风功率历史数据以及风速、风向等数值天气预报数据作为输入对风功率进... 随着新能源的不断发展,大量大容量风电机组并入电网运行,给电网的安全可靠运行以及风力发电的可持续发展都提出了新的挑战。提出一种风功率预测模型,该模型以风电场风功率历史数据以及风速、风向等数值天气预报数据作为输入对风功率进行预测。考虑到风功率预测中输入数据的波动性和不确定性,在传统门控循环单元(GRU)神经网络的基础上融合卷积神经网络(CNN),以提高模型对原始数据的特征提取和降维能力,并引入dropout技术减少模型中的过拟合现象。工程实例分析表明,所提模型在预测准确度和运算速度方面均优于长短记忆神经网络模型。 展开更多
关键词 风功率预测 深度神经网络 门控循环单元 卷积神经网络
在线阅读 下载PDF
基于并行双向门控循环单元与自注意力机制的中文文本情感分类 被引量:4
17
作者 崔昕阳 龙华 +2 位作者 熊新 邵玉斌 杜庆治 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第2期115-123,共9页
在基于深度学习的文本情感分类研究领域中,目前传统的模型主要是序列结构,即采用单一的预训练词向量来表示文本从而作为神经网络的输入,然而使用某一种预训练的词向量会存在未登录词和词语语义学习不充分的问题。针对此问题,提出基于并... 在基于深度学习的文本情感分类研究领域中,目前传统的模型主要是序列结构,即采用单一的预训练词向量来表示文本从而作为神经网络的输入,然而使用某一种预训练的词向量会存在未登录词和词语语义学习不充分的问题。针对此问题,提出基于并行双向门控循环单元(gated recurrent unit,GRU)网络与自注意力机制的文本情感分类模型,利用两种词向量对文本进行表示并作为并行双向GRU网络的输入,通过上下两个通道分别对文本进行上下文信息的捕捉,得到表征向量,再依靠自注意力机制学习词语权重并加权,最后对两个通道的输出向量进行向量融合,作为输入进入全连接层判别情感倾向。将本文模型与多个传统模型在两个公共数据集上进行实验验证,结果表明本文模型在查准率、查全率、F1值和准确率等性能指标上相比于双向门控循环单元网络模型、双向长短时记忆网络模型和双向门控循环单元网络与自注意力机制的单通道网络模型均有所提升。 展开更多
关键词 双向门控循环单元 词向量 自注意力机制 情感分类
在线阅读 下载PDF
基于多重注意力卷积神经网络双向门控循环单元的机械故障诊断方法研究 被引量:14
18
作者 程建刚 毕凤荣 +3 位作者 张立鹏 李鑫 杨晓 汤代杰 《内燃机工程》 CAS CSCD 北大核心 2021年第4期77-83,92,共8页
为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断... 为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断方法。首先将原始时域数据输入卷积神经网络(convolutional meural networks,CNN)进行初步特征提取并降维,然后将结果重组输入双向门控循环单元(bidirectional gated recurrent unit,BiGRU),可以有效地解决BiGRU对于过长序列数据处理困难的问题。采用美国凯斯西储大学开源轴承数据集进行训练,确定了最佳卷积层数和最佳样本长度约减比例分别为2和1/8。同时,通过在CNN和BiGRU中分别加入卷积注意力模块(convolutional block attention module,CBAM)和序列注意力模块(sequence attention module,SAM),进一步加强了模型对于关键信息的提取能力。最后实测柴油机故障振动信号试验表明:MA-CNN-BiGRU模型可以实现端到端的故障诊断,与变分模态分解(variational mode decomposition,VMD)核模糊C均值聚类算法(VMD-kernel fuzzy C-means clustering,VMD-KFCM)、VMD-反向传播神经网络(back propagation neural network,BPNN)和一维CNN等方法进行对比,MA-CNN-BiGRU模型的故障诊断性能更优。 展开更多
关键词 注意力 故障诊断 多重注意力卷积神经网络双向门控循环单元(MA-CNN-BiGRU) 端到端
在线阅读 下载PDF
基于卷积神经网络和双向门控循环单元网络注意力机制的情感分析 被引量:14
19
作者 张腾 刘新亮 高彦平 《科学技术与工程》 北大核心 2021年第1期269-274,共6页
传统的情感分析方法不能获取全局特征,以及否定词、转折词和程度副词的出现影响句子极性判断。在深度学习方法基础上提出了基于卷积神经网络和双向门控循环单元网络注意力机制的短文本情感分析方法。将情感积分引入卷积神经网络,利用情... 传统的情感分析方法不能获取全局特征,以及否定词、转折词和程度副词的出现影响句子极性判断。在深度学习方法基础上提出了基于卷积神经网络和双向门控循环单元网络注意力机制的短文本情感分析方法。将情感积分引入卷积神经网络,利用情感词自身信息,通过双向门控循环网络模型获取全局特征,对影响句子极性的否定词、转折词和程度副词引入注意力机制实现对这类词的重点关注,提取影响句子极性的重要信息。实验结果表明,该模型与现有相关模型相比,有效提高情感分类的准确率。 展开更多
关键词 深度学习 双向门控循环单元(Bi-GRU) 注意力机制 卷积神经网络 情感分析
在线阅读 下载PDF
基于相位变换和GhostNet-门控循环单元的自动调制识别方法 被引量:1
20
作者 陈昊 郭文普 康凯 《火箭军工程大学学报》 2024年第4期86-92,共7页
针对信号调制方式低信噪比条件下识别准确率不高的问题,提出了一种由相位变换、GhostNet、压缩与激励网络(Squeeze and Excitation Network,SENet)、门控循环单元(Gated Recurrent Unit,GRU)和深度神经网络组成的模型,用于自动调制识别... 针对信号调制方式低信噪比条件下识别准确率不高的问题,提出了一种由相位变换、GhostNet、压缩与激励网络(Squeeze and Excitation Network,SENet)、门控循环单元(Gated Recurrent Unit,GRU)和深度神经网络组成的模型,用于自动调制识别接收信号。首先,采用基准数据集RML2016.10a和RML2016.10b同相正交数据作为模型输入;其次,构建识别模型,其中,相位变换用于降低相位偏移对调制识别的影响,GhostNet和GRU分别用于提取调制信号的空间特征和时间特征,SENet用于对特征图权重进行调整;而后,通过深度神经网络进行分类;最后,对所提模型进行了训练及测试。实验结果表明:与现有模型CGDNet、CLDNN、IC-AMCNet、MCLDNN和LSTM相比,所提出模型显著降低了参数量,有效提升了低信噪比条件下的识别准确率,平均识别准确率分别达到62.30%和64.45%。 展开更多
关键词 自动调制识别 深度学习 相位变换 GhostNet 门控循环单元
在线阅读 下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部