期刊导航
期刊开放获取
VIP36
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于谷歌地球引擎平台的海上养殖信息提取方法研究——以福建省平潭县为例
1
作者
闫锦崴
郑蔚恒
于鹏
《应用海洋学学报》
CAS
CSCD
北大核心
2024年第2期360-370,共11页
海上养殖业对粮食安全有着至关重要的作用。然而,海上养殖的无序扩张和开发,阻碍了海上交通,同时也造成了海洋环境问题。为及时、准确地获取海上养殖信息,满足海岸带调查以及推进海上养殖规范化、科学化,提出一种基于谷歌地球引擎(Googl...
海上养殖业对粮食安全有着至关重要的作用。然而,海上养殖的无序扩张和开发,阻碍了海上交通,同时也造成了海洋环境问题。为及时、准确地获取海上养殖信息,满足海岸带调查以及推进海上养殖规范化、科学化,提出一种基于谷歌地球引擎(Google Earth Engine, GEE)平台实现长时间序列下海上养殖区信息快速提取的方法。本研究构建了一个基于随机森林分类的海上养殖区信息提取模型,该模型综合利用了Sentinel-1卫星SAR影像数据的VV和VH极化波段,以及Sentinel-2卫星的多光谱影像数据。此外,模型还融合了4个用于增强养殖区特征的指数,以提高养殖区域信息提取的准确性和效率。这种方法的应用旨在优化海上养殖区的识别过程,通过精确分析和利用不同数据源的互补优势,展现了遥感技术在海洋养殖监测领域的巨大潜力。本研究对2017—2021年平潭县海上养殖区域进行判定与提取,实验结果表明,以养殖密度较低,养殖特征不明显为特征的海上养殖区,基于GEE平台的海上养殖区信息提取方法精度在90%以上,表明在复杂水体背景下对养殖区快速识别取得较好的效果,可为海上养殖科学规划与规范化管理提供有效的参考依据。
展开更多
关键词
海洋物理学
谷歌地球引擎
海上养殖区提取
Sentinel-1/2
随机森林分类
平潭县
在线阅读
下载PDF
职称材料
题名
基于谷歌地球引擎平台的海上养殖信息提取方法研究——以福建省平潭县为例
1
作者
闫锦崴
郑蔚恒
于鹏
机构
厦门理工学院计算机与信息工程学院
自然资源部空间海洋遥感与应用重点实验室
出处
《应用海洋学学报》
CAS
CSCD
北大核心
2024年第2期360-370,共11页
基金
福建省自然科学基金(2021J05259)
厦门理工学院高层次人才项目(YKJ21009R)。
文摘
海上养殖业对粮食安全有着至关重要的作用。然而,海上养殖的无序扩张和开发,阻碍了海上交通,同时也造成了海洋环境问题。为及时、准确地获取海上养殖信息,满足海岸带调查以及推进海上养殖规范化、科学化,提出一种基于谷歌地球引擎(Google Earth Engine, GEE)平台实现长时间序列下海上养殖区信息快速提取的方法。本研究构建了一个基于随机森林分类的海上养殖区信息提取模型,该模型综合利用了Sentinel-1卫星SAR影像数据的VV和VH极化波段,以及Sentinel-2卫星的多光谱影像数据。此外,模型还融合了4个用于增强养殖区特征的指数,以提高养殖区域信息提取的准确性和效率。这种方法的应用旨在优化海上养殖区的识别过程,通过精确分析和利用不同数据源的互补优势,展现了遥感技术在海洋养殖监测领域的巨大潜力。本研究对2017—2021年平潭县海上养殖区域进行判定与提取,实验结果表明,以养殖密度较低,养殖特征不明显为特征的海上养殖区,基于GEE平台的海上养殖区信息提取方法精度在90%以上,表明在复杂水体背景下对养殖区快速识别取得较好的效果,可为海上养殖科学规划与规范化管理提供有效的参考依据。
关键词
海洋物理学
谷歌地球引擎
海上养殖区提取
Sentinel-1/2
随机森林分类
平潭县
Keywords
marine physics
Google Earth Engine
coastal aquaculture region extraction
Sentinel-1/2
random forest classification
Pingtan Country
分类号
P714 [天文地球—海洋科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于谷歌地球引擎平台的海上养殖信息提取方法研究——以福建省平潭县为例
闫锦崴
郑蔚恒
于鹏
《应用海洋学学报》
CAS
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部