期刊文献+
共找到739篇文章
< 1 2 37 >
每页显示 20 50 100
求和自回归移动平均模型与动态回归模型预测产超广谱β-内酰胺酶肺炎克雷伯菌的检出率
1
作者 王升 杨金兰 +4 位作者 陈瑞 陈建华 刘如品 杜秋争 荆自伟 《西北药学杂志》 CAS 2022年第2期159-165,共7页
目的分析产超广谱β-内酰胺酶(ESBLs)肺炎克雷伯菌的检出率,分别运用求和自回归移动平均(ARIMA)模型和动态回归模型建模并预测其流行趋势,为耐药菌株的科学防控提供参考依据。方法收集2014~2019年医院产ESBLs肺炎克雷伯菌检出率的季度... 目的分析产超广谱β-内酰胺酶(ESBLs)肺炎克雷伯菌的检出率,分别运用求和自回归移动平均(ARIMA)模型和动态回归模型建模并预测其流行趋势,为耐药菌株的科学防控提供参考依据。方法收集2014~2019年医院产ESBLs肺炎克雷伯菌检出率的季度监测数据,对其建立单纯ARIMA模型。考察产ESBLs肺炎克雷伯菌检出率与抗菌药物使用频度(DDDs)的相关性,以与产ESBLs肺炎克雷伯菌检出率显著相关的DDDs作为输入变量,对产ESBLs肺炎克雷伯菌检出率建立含输入变量的动态回归模型。分别运用所建立的模型预测2020年第1季度至2020年第4季度产ESBLs肺炎克雷伯菌检出率。运用最小信息量(AIC)准则对ARIMA模型和动态回归模型分别筛选最优模型,并比较2种模型的拟合效果。以2020年第1季度至2020年第4季度产ESBLs肺炎克雷伯菌检出率的实际数据验证和比较2种模型的预测有效性和准确性。结果产ESBLs肺炎克雷伯菌检出率与同期哌拉西林舒巴坦DDDs呈正相关(r=0.75,P<0.05)。最终对ESBLs肺炎克雷伯菌检出率建立了单纯ARIMA(1,0,0)模型(AIC=175.75)和以哌拉西林舒巴坦DDDs为输入变量的动态回归模型(AIC=171.40)。2种模型的4期预测平均相对误差分别为25.62%、25.22%。结论建立的单纯ARIMA模型和动态回归模型均能有效预测产ESBLs肺炎克雷伯菌的检出率。动态回归模型的拟合和预测效果在一定程度上优于单纯ARIMA模型。 展开更多
关键词 肺炎克雷伯菌 产超广谱β-内酰胺酶(ESBLs) 求和自回归移动平均(ARIMA)模型 动态回归模型
在线阅读 下载PDF
季节性求和自回归移动平均模型在北京市房山区感染性腹泻发病趋势预测中的应用 被引量:2
2
作者 李丽丽 董瑞强 +2 位作者 石磊 黄少平 阚震 《疾病监测》 CAS 2016年第2期136-140,共5页
目的构建北京市房山区感染性腹泻发病的季节性求和自回归移动平均(seasonal autoregressive integrated moving average,SARIMA)模型并进行预测。方法应用R 3.0.1软件程序包中的TSA对2004 2013年房山区感染性腹泻月发病率构建模型,并对2... 目的构建北京市房山区感染性腹泻发病的季节性求和自回归移动平均(seasonal autoregressive integrated moving average,SARIMA)模型并进行预测。方法应用R 3.0.1软件程序包中的TSA对2004 2013年房山区感染性腹泻月发病率构建模型,并对2014年各月感染性腹泻月发病率进行预测和评价。结果 SARIMA(0,0,2)(0,1,1)12模型较好地拟合既往时间段月发病率,对2014年发病趋势拟合平均相对误差为19.164%,对年发病率拟合平均相对误差为2.303%。结论 SARIMA(0,0,2)(0,1,1)12模型能够很好拟合感染性腹泻月发病率数据,可用于房山区感染性腹泻发病趋势的短期预测,为下一步采取针对性防控措施提供科学依据。 展开更多
关键词 感染性腹泻 季节性求和自回归移动平均模型 时间序列分析
原文传递
求和自回归移动平均模型在通辽市成蚊密度预测中的应用 被引量:1
3
作者 邵华 布仁巴图 +4 位作者 秦忠良 商娜 倪晓娜 张志平 李莹盈 《实用预防医学》 CAS 2023年第2期242-245,共4页
目的 分析通辽市不同年份成蚊密度,通过拟合求和自回归移动平均模型(autoregressive integrated moving average, ARIMA)对未来蚊虫密度进行预测。方法 选用诱蚊灯法监测通辽市2017—2021年不同生境成蚊密度,根据监测结果,建立ARIMA模型... 目的 分析通辽市不同年份成蚊密度,通过拟合求和自回归移动平均模型(autoregressive integrated moving average, ARIMA)对未来蚊虫密度进行预测。方法 选用诱蚊灯法监测通辽市2017—2021年不同生境成蚊密度,根据监测结果,建立ARIMA模型,对2022年成蚊密度进行预测。结果 2017—2021年通辽市各监测点平均蚊密度为7.91只/(灯·夜)。其中淡色库蚊为优势蚊种。在五类生境中,除2017年农户蚊密度较高外,其他年份都是牲畜棚密度较高。每年成蚊密度均为单峰曲线,除2017年高峰出现在7月份外,其余年份高峰均出现在8月,根据2017—2021年蚊虫密度结果,拟合ARIMA(1,1,1)×(1,1,0)_(12)模型,残差序列为白噪声序列(Q=14.498,P=0.488),用此模型预测2022年的成蚊密度,5—10月份分别为8.12、7.48、13.79、29.31、22.08和12.37只/(灯·夜)。结论 利用2017—2021年的数据建立ARIMA模型,能够预测2022年的成蚊密度和季节消长趋势,为进一步蚊媒传染病风险评估提供理论数据支持。 展开更多
关键词 蚊密度 预测 求和自回归移动平均模型
原文传递
自回归求和移动平均乘积季节模型在西安地区出生缺陷预测中的应用 被引量:11
4
作者 张丽 米白冰 +7 位作者 相晓妹 宋辉 董敏 张水平 章琦 王玲玲 屈鹏飞 党少农 《西安交通大学学报(医学版)》 CAS CSCD 北大核心 2017年第3期371-374,426,共5页
目的应用自回归求和移动平均(ARIMA)乘积季节模型预测西安市出生缺陷的发生率。方法利用2009年10月至2015年8月出生缺陷监测数据对西安市出生缺陷发生率数据构建ARIMA乘积季节模型,同时利用2015年9月至12月实际出生缺陷发生率与模型拟... 目的应用自回归求和移动平均(ARIMA)乘积季节模型预测西安市出生缺陷的发生率。方法利用2009年10月至2015年8月出生缺陷监测数据对西安市出生缺陷发生率数据构建ARIMA乘积季节模型,同时利用2015年9月至12月实际出生缺陷发生率与模型拟合数据进行比较,评价模型的预测性能,并预测西安市2016年的出生缺陷发生率。结果西安市出生缺陷的发生率具有一定的趋势及季节性,建立了ARIMA(0,0,1)(0,1,1)12乘积季节模型,利用2015年9月至12月拟合值与实际出生缺陷发生率比较,绝对误差的平均9.5,相对误差的平均0.084,提示ARIMA(0,0,1)(0,1,1)12乘积季节模型具有较佳的预测能力。预测2016年西安市出生缺陷发生率与2015年接近,总体略有抬升,但峰值下降。结论 ARIMA(0,0,1)(0,1,1)12乘积季节模型可用于西安市出生缺陷发生率的预测。 展开更多
关键词 出生缺陷 自回归求和移动平均乘积季节模型 预测
在线阅读 下载PDF
自回归求和移动平均模型在湖南省食物中毒预测中的应用 被引量:7
5
作者 陈玲 徐慧兰 《中南大学学报(医学版)》 CAS CSCD 北大核心 2012年第2期142-146,共5页
目的:探索自回归求和移动平均模型(autoregressive integrated moving average,ARIMA)在湖南省食物中毒预测中的应用,为食物中毒的预防和控制提供依据。方法:收集2003年1月至2009年12月湖南省食物中毒人数进行ARIMA模型拟合,用2010年的... 目的:探索自回归求和移动平均模型(autoregressive integrated moving average,ARIMA)在湖南省食物中毒预测中的应用,为食物中毒的预防和控制提供依据。方法:收集2003年1月至2009年12月湖南省食物中毒人数进行ARIMA模型拟合,用2010年的中毒资料验证模型的预测效果,并预测2011年湖南省食物中毒人数。结果:ARIMA(0,1,1)(0,1,1)12较好地拟合了既往时间段中毒人数的时间序列,拟合预测误差为9.59%,2011年湖南省食物中毒预测人数为834人。结论:ARIMA预测模型能较好地拟合短期内食物中毒人数在时间序列上的变化趋势,若用于长期预测,应根据长期监测数据不断调整模型参数。 展开更多
关键词 自回归求和移动平均模型 食物中毒 预测
在线阅读 下载PDF
自回归求和移动平均模型在湖北省戊型病毒性肝炎发病率预测中的应用 被引量:3
6
作者 严婧 杜玉开 杨北方 《郑州大学学报(医学版)》 CAS 北大核心 2017年第3期290-295,共6页
目的:应用自回归求和移动平均模型(ARIMA模型)对湖北省戊型病毒性肝炎疫情报告数据进行分析、预测,为戊型病毒性肝炎的监测、预警提供理论依据。方法:采用SAS 9.2对2004年1月至2015年12月湖北省戊型病毒性肝炎的报告疫情数据进行ARIMA... 目的:应用自回归求和移动平均模型(ARIMA模型)对湖北省戊型病毒性肝炎疫情报告数据进行分析、预测,为戊型病毒性肝炎的监测、预警提供理论依据。方法:采用SAS 9.2对2004年1月至2015年12月湖北省戊型病毒性肝炎的报告疫情数据进行ARIMA模型的参数估计、拟合检验,预测2016年1月至12月戊型病毒性肝炎的月发病数,并用实际数据验证评估预测效果。结果:ARIMA(1,1,1)×(0,1,1)12模型拟合误差RMSE为0.045,2016年1月至12月戊型病毒性肝炎预测值平均相对误差为14.23%,能较好地拟合原始序列数据,预测精度较高。结论:ARIMA模型对湖北省戊型病毒性肝炎报告发病率短期预测精度良好,具有实际应用价值。 展开更多
关键词 戊型病毒性肝炎 自回归求和移动平均模型 发病率 预测 湖北省
在线阅读 下载PDF
求和自回归移动平均模型在陕西省细菌性痢疾发病预测中的应用 被引量:6
7
作者 邱琳 郁会莲 +2 位作者 李红蕾 朱妮 贠鹏飞 《疾病监测》 CAS 2014年第5期403-406,共4页
目的探讨时间序列模型预测传染性疾病发病率的可行性,应用自回归移动平均(autoregressive integrated moving average,ARIMA)模型对陕西省细菌性痢疾进行预测,为制定细菌性痢疾防治策略提供依据。方法根据2004-2012年陕西省细菌性痢疾... 目的探讨时间序列模型预测传染性疾病发病率的可行性,应用自回归移动平均(autoregressive integrated moving average,ARIMA)模型对陕西省细菌性痢疾进行预测,为制定细菌性痢疾防治策略提供依据。方法根据2004-2012年陕西省细菌性痢疾月报告发病率的时间序列,以2013年1-12月的月发病率作为验证数据,建立ARIMA模型,并对预测效果进行评价。结果陕西省2004-2012年细菌性痢疾月发病率即含有长期递减趋势又含有以年为周期的季节效应,拟合的相对最佳模型为ARIMA(0,1,1)×(1,1,0)12。残差分析统计量经检验差异无统计学意义(Ljung-Box Q=21.994,P=0.143),提示残差为白噪声。2013年1-12月实际值与预测值的相对误差平均值为20.75%,最大40.37%,最小4.94%。结论 ARIMA模型可以较好地预测陕西省细菌性痢疾的发病趋势,模型预测效果的优化有待原始数据的进一步积累。 展开更多
关键词 细菌性痢疾 月发病率 自回归移动平均模型
原文传递
借助自回归移动平均模型构建儿童口服退烧药消耗量的预测模型
8
作者 王卓芸 于飚 +1 位作者 陶亮亮 蔡和平 《中南药学》 CAS 2024年第4期1097-1100,共4页
目的 使用自回归移动平均(ARIMA)模型对医院口服退烧药消耗量进行预测,旨在为医院药品供应提供参考。方法 收集某儿童医院2013年1月—2018年12月全院每月口服退烧药的消耗量建立ARIMA模型,预测2019年1—12月口服退烧药的消耗量,以2019年... 目的 使用自回归移动平均(ARIMA)模型对医院口服退烧药消耗量进行预测,旨在为医院药品供应提供参考。方法 收集某儿童医院2013年1月—2018年12月全院每月口服退烧药的消耗量建立ARIMA模型,预测2019年1—12月口服退烧药的消耗量,以2019年1—12月实际消耗量数据评价预测模型是否合适。结果 2013年1月—2018年12月每月口服退烧药消耗量的时间序列呈现明显的季节性,在每年1月、5—7月及12月出现消耗量峰值。该时间序列经季节性分解后拟合ARIMA(1,1,1)(1,1,1)_(12)模型,拟合效果较好,经过对比发现除2019年1月和2019年12月两个月外,其余月份预测值与实际值的相对误差均在20%以内。结论 依照2013年1月—2018年12月全院每月口服退烧药消耗量建立的ARIMA模型能够较好地预测口服退烧药消耗量,可为医院科学的药品供应提供一定参考。 展开更多
关键词 自回归移动平均模型 口服退烧药消耗量 药品供应
在线阅读 下载PDF
基于小波变换与差分自回归移动平均模型的微博话题热度预测 被引量:13
9
作者 陈羽中 方明月 +1 位作者 郭文忠 郭昆 《模式识别与人工智能》 EI CSCD 北大核心 2015年第7期586-594,共9页
研究话题热度预测问题对于网络广告传播效应最大化、网络舆论引导与控制等具有重要意义.首先,根据用户关系及话题因素计算用户影响力,进而定义话题影响力.然后,基于老化理论并考虑话题影响力和话题相关微博数定义话题能量值,量化话题热... 研究话题热度预测问题对于网络广告传播效应最大化、网络舆论引导与控制等具有重要意义.首先,根据用户关系及话题因素计算用户影响力,进而定义话题影响力.然后,基于老化理论并考虑话题影响力和话题相关微博数定义话题能量值,量化话题热度.最后,提出基于小波变换与差分自回归移动平均模型的微博话题热度预测方法,以此预测话题热度(能量值)及话题能量峰值.实验表明,文中方法可有效预测话题热度及峰值,具有较低的残差和遗漏率. 展开更多
关键词 话题热度预测 用户影响力 老化理论 小波变换 差分自回归移动平均模型(ARIMA)
在线阅读 下载PDF
改进的差分自回归移动平均模型的共轭梯度参数估计法 被引量:6
10
作者 单锐 刘雅宁 刘文 《河南科技大学学报(自然科学版)》 CAS 北大核心 2015年第4期85-90,9,共6页
为了提高差分自回归移动平均模型的拟合精度,本文结合已有的文献,借助无约束优化方法来解决此模型中的参数估计问题。主要提出了一种改进的差分自回归移动平均模型参数的优化估计法,并对提出的算法进行详细说明,在强Wolfe条件下对全局... 为了提高差分自回归移动平均模型的拟合精度,本文结合已有的文献,借助无约束优化方法来解决此模型中的参数估计问题。主要提出了一种改进的差分自回归移动平均模型参数的优化估计法,并对提出的算法进行详细说明,在强Wolfe条件下对全局收敛性进行了证明。该方法保证了迭代计算的收敛性,并且提高了收敛的速度。数值试验结果说明:该算法是一种较为有效的方法,与其他方法比较,参数估计值更为显著,提高了预测精度。 展开更多
关键词 差分自回归移动平均模型(ARIMA模型) 自回归滑动平均模型(ARMA模型) 参数估计 无约束问题 共轭梯度法 WOLFE搜索
在线阅读 下载PDF
副伤寒的求和自回归滑动平均模型预警应用实例 被引量:5
11
作者 黄春萍 张磊 +1 位作者 邓晶 程瑾 《疾病监测》 CAS 2008年第7期422-423,共2页
目的探讨时间序列求和自回归滑动平均模型(ARIMA)在副伤寒预警中应用的可行性。方法利用SAS9.0统计软件对《国家疾病报告管理信息系统》报告的杭州市副伤寒按周发病数进行ARIMA建模。结果对副伤寒发病数序列建立三阶自回归模型AR(3),并... 目的探讨时间序列求和自回归滑动平均模型(ARIMA)在副伤寒预警中应用的可行性。方法利用SAS9.0统计软件对《国家疾病报告管理信息系统》报告的杭州市副伤寒按周发病数进行ARIMA建模。结果对副伤寒发病数序列建立三阶自回归模型AR(3),并绘制预警线图,对2007年7月发生的副伤寒暴发疫情进行了及时预警。结论模型能够较好应用于副伤寒预警,为疫情防控提供了有力帮助。 展开更多
关键词 副伤寒 求和自回归滑动平均模型 预警
在线阅读 下载PDF
时间序列自回归移动平均模型在临床红细胞用量预测中的应用 被引量:16
12
作者 叶柱江 刘赴平 《中国输血杂志》 CAS CSCD 北大核心 2013年第2期131-134,共4页
目的验证自回归移动平均模型(ARIMA)预测临床红细胞用量的可行性,并为血站制定备血计划提供数据支持。方法选择东莞市2006年1月~2011年12月6年的每月临床红细胞用量作为时间序列模型的数据源。利用SPSS软件进行时间序列模型的构建,通过... 目的验证自回归移动平均模型(ARIMA)预测临床红细胞用量的可行性,并为血站制定备血计划提供数据支持。方法选择东莞市2006年1月~2011年12月6年的每月临床红细胞用量作为时间序列模型的数据源。利用SPSS软件进行时间序列模型的构建,通过对2012年的前5个月临床红细胞实际用量进行模型检验。并据此对模型预测临床红细胞用量分析的可行性、建模步骤及准确性验证进行了探讨。结果 ARIMA模型计算出的预测值与实际值拟合较好,相对误差较小。1月份相对误差为-6.32%,2月份为13.28%,3月份为7.78%,4月份为3.73%,5月份为3.78%,平均相对误差为4.45%。结论可以应用时间序列自回归移动平均模型对未来的临床红细胞用量进行预测,为血站制定备血计划提供可靠的参考依据。 展开更多
关键词 时间序列 自回归移动平均模型(ARIMA) 预测 红细胞用量
在线阅读 下载PDF
自回归移动平均模型在医疗服务需求预测中的应用 被引量:9
13
作者 张柠 苏学艳 李力 《中国医院管理》 2011年第10期6-8,共3页
目的拟合医疗服务需求时间序列资料的预测模型。方法采用自回归移动平均模型对出院人次进行模型拟合。结果模型拟合得到的最优模型为一阶自回归移动平均模型,模型预测2020年某市三甲医院的出院总人次将为93.88万人次。结论自回归移动平... 目的拟合医疗服务需求时间序列资料的预测模型。方法采用自回归移动平均模型对出院人次进行模型拟合。结果模型拟合得到的最优模型为一阶自回归移动平均模型,模型预测2020年某市三甲医院的出院总人次将为93.88万人次。结论自回归移动平均模型适用于出院总人次时间序列模型拟合,预测结果显示,在没有外来干预因素影响的情况下,三甲医院出院总人次将会延续2009年以前的上升趋势继续上涨。 展开更多
关键词 自回归移动平均模型 医疗服务需求 时间序列分析
在线阅读 下载PDF
基于季节自回归单整移动平均模型的电梯交通流递归预测方法 被引量:4
14
作者 宗群 赵占山 商安娜 《天津大学学报》 EI CAS CSCD 北大核心 2008年第6期653-659,共7页
针对电梯交通流预测提出了一种基于季节自回归单整移动平均(SARIMA)模型的递归预测方法.通过离线分析,对电梯交通流利用时间序列分析得到初始的SARIMA模型,引入异常值检测对训练数据中的异常值进行修正,利用修正的序列得到电梯交通流SAR... 针对电梯交通流预测提出了一种基于季节自回归单整移动平均(SARIMA)模型的递归预测方法.通过离线分析,对电梯交通流利用时间序列分析得到初始的SARIMA模型,引入异常值检测对训练数据中的异常值进行修正,利用修正的序列得到电梯交通流SARIMA模型;在线预测时,将离线得到修正的SARIMA模型转化为状态空间形式,通过Kalman滤波实时调整状态向量,实现电梯交通流的实时在线预测.仿真表明该方法具有很好的预测性能,且运行时间短,满足实时性的要求. 展开更多
关键词 电梯交通流预测 季节自回归单整移动平均模型 异常值检测 KALMAN滤波 状态空间模型
在线阅读 下载PDF
长沙市流行性腮腺炎季节性自回归移动平均模型预测研究 被引量:3
15
作者 刘琳玲 刘如春 +5 位作者 陈田木 张本忠 李亚曼 胡伟红 谢知 赵锦 《中国全科医学》 CAS 北大核心 2017年第2期187-190,共4页
目的采用季节性自回归移动平均(SARIMA)模型预测长沙市流行性腮腺炎发病数。方法收集2005—2015年长沙市报告的流行性腮腺炎病例数据,将2005—2014年数据作为建模数据,将2015年数据作为验证数据,开展SARIMA模型建立与验证研究,并对2016... 目的采用季节性自回归移动平均(SARIMA)模型预测长沙市流行性腮腺炎发病数。方法收集2005—2015年长沙市报告的流行性腮腺炎病例数据,将2005—2014年数据作为建模数据,将2015年数据作为验证数据,开展SARIMA模型建立与验证研究,并对2016年流行性腮腺炎发病数进行预测。结果 SARIMA(3,0,0)×(1,0,0)_(12)模型可以很好地拟合实际数据,模型的展开式为:Y_t=222.545+1.225Y_(t-1)-0.713Y_(t-2)+0.291Y_(t-3)+0.366Y_(t-12)-0.448Y_(t-13)+0.261Y_(t-14)-0.107Y_(t-15)+a_t。将验证数据与预测数据进行相关性分析,结果显示呈显著性相关(r=0.61,P<0.001)。SARIMA模型预测2016年长沙市全年发病数将达到3 032例,平均月病例数为253例。结论 SARIMA模型可以用于流行性腮腺炎发病数预测,长沙市2016年流行性腮腺炎疫情仍处于高发态势。 展开更多
关键词 流行性腮腺炎 时间序列 季节性自回归移动平均模型 预测
在线阅读 下载PDF
差分自回归移动平均模型在南通市手足口病疫情预测中的应用 被引量:3
16
作者 练维 魏叶 +1 位作者 韩颖颖 帅小博 《南京医科大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期59-64,共6页
目的:应用差分自回归移动平均模型(ARIMA)预测南通市手足口病疫情趋势。方法:以2010年1月—2019年6月南通市手足口病分月报告病例数据为基础,构建符合季节性时间序列的ARIMA(p,d,q)×(P,D,Q)S模型,用2019年7—12月全市手足口病月发... 目的:应用差分自回归移动平均模型(ARIMA)预测南通市手足口病疫情趋势。方法:以2010年1月—2019年6月南通市手足口病分月报告病例数据为基础,构建符合季节性时间序列的ARIMA(p,d,q)×(P,D,Q)S模型,用2019年7—12月全市手足口病月发病率为验证数据进行验证,检验模型的预测效果。结果:2010—2019年南通市共报告手足口病90 766例,年平均发病率为124.36/10万,疫情有明显季节性,呈双峰特征,为夏季(5、6、7月)高峰和冬季(11、12月)次高峰;近年来南通市手足口病的病原谱以其他肠道病毒为主;利用ARIMA(1,0,1)(1,1,1)12模型,预测2019年7—12月手足口病发病率分别为7.08/10万、1.81/10万、3.74/10万、7.21/10万、10.71/10万和11.29/10万,与实际发病率相比,两者差异无统计学意义(Z=0.48,P=0.63)。结论:差分自回归移动平均模型能较好地预测手足口病的发病趋势,可用于短期的预警监测。 展开更多
关键词 差分自回归移动平均模型 手足口病 预测
在线阅读 下载PDF
自回归单整移动平均模型在财政支出预测中的应用 被引量:6
17
作者 陈盈 赵伟 闫晓茗 《经济研究参考》 北大核心 2014年第33期53-62,共10页
财政支出是一个地区或国家经济指标体系中的一个核心指标,它能综合反映经济活动总量和衡量一个地区或国家的工业经济发展水平。对财政支出进行定量分析并对其做出较为准确的预测则可以为相关部门或者企业制定发展规划、实施相关措施提... 财政支出是一个地区或国家经济指标体系中的一个核心指标,它能综合反映经济活动总量和衡量一个地区或国家的工业经济发展水平。对财政支出进行定量分析并对其做出较为准确的预测则可以为相关部门或者企业制定发展规划、实施相关措施提供可靠的理论预测参考。通过财政支出规模和结构的预测,有利于指导未来财政支出结构优化工作的进行,同时建立财政支出结构预警体系,对于财政支出结构中出现异常波动的部分进行重点关注。本文是对财政支出预测理论和途径的一种探索,引入自回归单整移动平均模型,在模型的进一步使用中还需注意其他影响因素的出现,如经济波动、财政政策的大幅度调整等,未来还需要引入相关的要素对财政支出预算模型和理论进行不断完善。 展开更多
关键词 财政支出 预测 自回归单整移动平均模型
在线阅读 下载PDF
自回归移动平均模型在医院门诊量和出院人数预测中的应用 被引量:7
18
作者 赵景义 章娟 王晓成 《中国药物与临床》 CAS 2018年第9期1621-1623,共3页
门诊日常医疗服务工作具有点多面广,涉及科室多的特点。门诊量在很大程度上反映医院的规模、医疗技术水平、门诊管理水平以及患者对医院的信任程度。门诊量分析是门诊医疗服务的起点。研究门诊量的变化规律,预测其变化趋势有主要意义。... 门诊日常医疗服务工作具有点多面广,涉及科室多的特点。门诊量在很大程度上反映医院的规模、医疗技术水平、门诊管理水平以及患者对医院的信任程度。门诊量分析是门诊医疗服务的起点。研究门诊量的变化规律,预测其变化趋势有主要意义。对就医患者数据的概况统计和动态规律性分析对未来的医疗服务具有重要的参考价值,为医疗制定决策,编制工作计划提供依据。门诊量和出院人数是医疗工作的重要评价指标。 展开更多
关键词 医院门诊量 自回归移动平均模型 出院人数 预测 医疗服务工作 医疗技术水平 应用 门诊医疗服务
在线阅读 下载PDF
利用ARIMA(自回归移动平均)模型对跑道侵入事件的分析及预测 被引量:8
19
作者 高扬 李阳 《中国安全科学学报》 CAS CSCD 2008年第11期25-30,共6页
综合运用具有相当精度的时间序列分析方法,建立美国民航运输安全中的机场跑道侵入的AR IMA(自回归移动平均)模型,克服了样本空间总是有限带来的不足,揭示出民航跑道侵入的动态变化规律,并对未来美国民航跑道侵入事故发生次数进行较准确... 综合运用具有相当精度的时间序列分析方法,建立美国民航运输安全中的机场跑道侵入的AR IMA(自回归移动平均)模型,克服了样本空间总是有限带来的不足,揭示出民航跑道侵入的动态变化规律,并对未来美国民航跑道侵入事故发生次数进行较准确的预测,为我国民航部门科学地制定飞行计划、人员培训、提高安全管理水平,提供可靠的依据。 展开更多
关键词 时间序列分析 跑道侵入 ARIMA(自回归移动平均)模型 社会科学统计软件包(SPSS) 美国联邦航空局(FAA)
在线阅读 下载PDF
自回归移动平均模型在北京市朝阳区手足口病发病预测中的应用 被引量:1
20
作者 葛申 马建新 +3 位作者 付凌姣 王晶 崔树峰 张政 《首都公共卫生》 2019年第2期83-86,共4页
目的通过构建时间序列自回归移动平均模型(autoregressive integrated moving average model,ARIMA),对手足口发病趋势进行预测,探讨该模型在发病预测中的应用。方法从疾病监测信息报告管理系统提取北京市朝阳区2010年1月-2016年12月手... 目的通过构建时间序列自回归移动平均模型(autoregressive integrated moving average model,ARIMA),对手足口发病趋势进行预测,探讨该模型在发病预测中的应用。方法从疾病监测信息报告管理系统提取北京市朝阳区2010年1月-2016年12月手足口病月发病数据。建立ARIMA季节乘积模型,对2010年1月-2015年12月的月发病数进行拟合,再以2016年1-12月的月发病数作为验证数据,评价其预测效果。结果通过对模型进行拟合优度及残差序列进行白噪声检验,最后选择了ARIMA(1,0,0)(1,1,0)_(12)为最佳模型。对2016年1-12月发病数进行预测,实际发病数均落入95%CI内,平均相对误差为49.37%。模型中加入2016年1-6月的月实际发病数,预测2016年7-12月的月发病数,平均相对误差为18.12%。结论 ARIMA季节模型可应用于手足口病等具有季节性变动特征的传染病预测。ARIMA模型短期预测手足口病的发病情况精度更高,可通过不断纳入新的实际观测值开展动态分析。ARIMA模型仅为一种数学工具,在实际防控及监测工作中,需要结合专业理论知识及具体情况进行分析。 展开更多
关键词 自回归移动平均模型 手足口病 预测
在线阅读 下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部