The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and micr...The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.展开更多
Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble si...Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble size.For the same volume system,fewer bubbles result from a distribution of large-sized bubbles,and more bubbles result from a distribution of small-sized bubbles.In this research,fundamental two-phase frother characterization parameters were aimed to link with three-phase coal and talc flotation behavior.For this purpose,the effect of single and dual frother systems on inhibiting bubble coalescence was investigated with methyl isobutyl carbinol(MIBC),isooctanol(2 ethyl hexanol),pine oil,and Dowfroth 250.Based on the results of single frothers,isooctanol at the lowest critical coalescence concentration(CCC)value of 6×10^(−6) achieved the smallest bubbles with Sauter mean diameter of 0.80 mm.By blending Dowfroth 250 and pine oil,the bubbles size decreased significantly,reaching 0.45 mm.While the highest recoveries in coal flotation were obtained in single and frother blends where the bubbles size was measured as the smallest in two-phase system,and such a relationship was not found for talc flotation.展开更多
The location of aluminum within the framework or extra-framework of zeolites is a critical factor in determining its catalytic performance.Despite extensive research on the identification and formation mechanism of ex...The location of aluminum within the framework or extra-framework of zeolites is a critical factor in determining its catalytic performance.Despite extensive research on the identification and formation mechanism of extra-framework aluminum(EFAl),its impact on catalytic performance requires further investigation.Herein,mordenite(MOR)zeolites with comparable acid density within the 8MR and 12MR channels but different EFAl contents were prepared,and their catalytic roles were examined in syngas conversion.Intelligent gravimetric analysis,model experiment of ethylene conversion and thermogravimetric analysis demonstrate that the existence of EFAl species can inhibit the secondary conversion of ethylene to long chain hydrocarbons(i.e.,C_(5+))as well as the over-accumulation of carbonaceous species.However,excessive EFAl species lead to rapid deactivation due to restricted space and thus severe diffusion limitation.MOR zeolite with a moderate amount of EFAl species achieves a superior ethylene selectivity and exhibits an enhanced stability in syngas conversion when combined with ZnAlOx oxide.The insights gained in this work provide important guidance for the design of more efficient zeolite-based catalysts.展开更多
The activity and adsorption behavior of oxygen on rutile TiO_(2)(110)(RTiO_(2)(110))were investigated using the temperature programmed desorption(TPD)method with methanol(CH_(3)OH)as the probe molecule.By controlling ...The activity and adsorption behavior of oxygen on rutile TiO_(2)(110)(RTiO_(2)(110))were investigated using the temperature programmed desorption(TPD)method with methanol(CH_(3)OH)as the probe molecule.By controlling the coverage of molecular O_(2) on the surface via increasing or decreasing O_(2) exposure,two chemisorbed O_(2)species on the surface are confirmed,one at the bridging oxygen vacancy(Ov)site(O_(2)^(2-)/Ov)and the other at the five-fold coordinated titanium(Ti_(5c))site(O^(2-)/Ti_(5c)).At low O_(2)exposure,O^(2-)/Ov is the main species on the surface,which only leads to the O-H bond cleavage of CH_(3)OH,producing methoxy groups(CHgO).However,after the Ov sites are nearly filled by O_(2) at about 0.1 L O_(2) exposure,O_(2)/Tisc species begins to appear on R-TiO_(2)(110)surface,resulting in the formation of formaldehyde(CH_(2)O)via the reaction of O_(2)/Tisc species with CH_(3)OH or CH3O to break the C-H bond at low surface temperature.Moreover,the yield of CH_(2)O increases linearly with that of H_(2)O.In addition,when the 1 L O_(2)covered surface is irradiated with 355 nm UV irradiation to desorb and dissociate O_(2)/Ti_(5c) species,the yield of CH_(2)O decreases linearly with that of H_(2)O.Further analysis suggests that the charge state of O_(2)/Ti_(5c) may not change as the exposure of O_(2)changes on the R-TiO_(2)(110) surface,and O_(2) is most likely to adsorb on the Ti_(5c)sites in the form of O_(2)^(2-),not O_(2)^(-),The result not only advances our understanding on the adsorption state of O_(2) on TiO_(2),but also provides clues for low temperature C-H bond activation with O_(2) on TiO_(2).展开更多
基金the National Natural Science Foundation of China(Nos.42177391,42077379)the Natural Science Foundation of Hunan Province,China(No.2022JJ20060)+1 种基金the Central South University Innovation-driven Research Program,China(No.2023CXQD065)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2023ZZTS0800).
文摘The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.
基金Project(ID42787)supported by the Istanbul Technical University,BAP(Scientific Research Project)Department,Turkey。
文摘Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble size.For the same volume system,fewer bubbles result from a distribution of large-sized bubbles,and more bubbles result from a distribution of small-sized bubbles.In this research,fundamental two-phase frother characterization parameters were aimed to link with three-phase coal and talc flotation behavior.For this purpose,the effect of single and dual frother systems on inhibiting bubble coalescence was investigated with methyl isobutyl carbinol(MIBC),isooctanol(2 ethyl hexanol),pine oil,and Dowfroth 250.Based on the results of single frothers,isooctanol at the lowest critical coalescence concentration(CCC)value of 6×10^(−6) achieved the smallest bubbles with Sauter mean diameter of 0.80 mm.By blending Dowfroth 250 and pine oil,the bubbles size decreased significantly,reaching 0.45 mm.While the highest recoveries in coal flotation were obtained in single and frother blends where the bubbles size was measured as the smallest in two-phase system,and such a relationship was not found for talc flotation.
文摘The location of aluminum within the framework or extra-framework of zeolites is a critical factor in determining its catalytic performance.Despite extensive research on the identification and formation mechanism of extra-framework aluminum(EFAl),its impact on catalytic performance requires further investigation.Herein,mordenite(MOR)zeolites with comparable acid density within the 8MR and 12MR channels but different EFAl contents were prepared,and their catalytic roles were examined in syngas conversion.Intelligent gravimetric analysis,model experiment of ethylene conversion and thermogravimetric analysis demonstrate that the existence of EFAl species can inhibit the secondary conversion of ethylene to long chain hydrocarbons(i.e.,C_(5+))as well as the over-accumulation of carbonaceous species.However,excessive EFAl species lead to rapid deactivation due to restricted space and thus severe diffusion limitation.MOR zeolite with a moderate amount of EFAl species achieves a superior ethylene selectivity and exhibits an enhanced stability in syngas conversion when combined with ZnAlOx oxide.The insights gained in this work provide important guidance for the design of more efficient zeolite-based catalysts.
基金This work was supported by the National Natural Science Foundation of China(No.21973010)Liaoning Revitalization Talents Program(No.XLYC1907032)The authors thank Qing Guo at Southern University of Science and Technolog for many insightful discussions。
文摘The activity and adsorption behavior of oxygen on rutile TiO_(2)(110)(RTiO_(2)(110))were investigated using the temperature programmed desorption(TPD)method with methanol(CH_(3)OH)as the probe molecule.By controlling the coverage of molecular O_(2) on the surface via increasing or decreasing O_(2) exposure,two chemisorbed O_(2)species on the surface are confirmed,one at the bridging oxygen vacancy(Ov)site(O_(2)^(2-)/Ov)and the other at the five-fold coordinated titanium(Ti_(5c))site(O^(2-)/Ti_(5c)).At low O_(2)exposure,O^(2-)/Ov is the main species on the surface,which only leads to the O-H bond cleavage of CH_(3)OH,producing methoxy groups(CHgO).However,after the Ov sites are nearly filled by O_(2) at about 0.1 L O_(2) exposure,O_(2)/Tisc species begins to appear on R-TiO_(2)(110)surface,resulting in the formation of formaldehyde(CH_(2)O)via the reaction of O_(2)/Tisc species with CH_(3)OH or CH3O to break the C-H bond at low surface temperature.Moreover,the yield of CH_(2)O increases linearly with that of H_(2)O.In addition,when the 1 L O_(2)covered surface is irradiated with 355 nm UV irradiation to desorb and dissociate O_(2)/Ti_(5c) species,the yield of CH_(2)O decreases linearly with that of H_(2)O.Further analysis suggests that the charge state of O_(2)/Ti_(5c) may not change as the exposure of O_(2)changes on the R-TiO_(2)(110) surface,and O_(2) is most likely to adsorb on the Ti_(5c)sites in the form of O_(2)^(2-),not O_(2)^(-),The result not only advances our understanding on the adsorption state of O_(2) on TiO_(2),but also provides clues for low temperature C-H bond activation with O_(2) on TiO_(2).